Explanation | There are altogether twenty-two `Timeons' which are directly or partially related to a couple of hours. They are named as `Fate Particle' of hour or `houron'. The codes of these `hourons' are: 1. `Im', 2. `Li', 3. `Ch', 4. `Kk', 5. `Hun', 6. `Kip', 7. `Tfu', 8. `Fgo', 9.`Sen', 10.`Muk', 11.`Dai', 12.`Lam', 13.`Won', 14.`Suy', 15.`Bam', 16.`Sei', 17.`Moo', 18.`Jut', 19.`Toi', 20.`Yeo', 21.`See', 22.`Seu'. The `Hourons' each has fantastic power and lays invisible stress with different influence on human destiny within two hours. In general, `Im' means `Vicious' or `Kill'. `Li' means `Malevolent' or `Kill'. `Ch' means `Literacy' or `Writing'. `Kk' means `Eloquence' or `Speaking'. `Hun' means `Loss',`Nil' or `Flight'. `Kip' means `Robbery' or `Disaster'. `Tfu' means `Success' or `Award'. `Fgo' means `Entitlement', `Mandate' or `Achieve'. `Sen' means `Born' or `Alive'. `Muk' means `Obscene' or `Bath'. `Dai' means `Begin' or `Mature'. `Lam' means `Officate' or `Reign'. `Won' means `Flourish' or Strong'. `Suy' means `Decline' or `Degenerate'. `Bam' means `Sick'. `Sei' means `Die'. `Moo' means `Store', `Conceal' or `Tomb'. `Jut' means `Cut', `Stop' or `None'. `Toi' means `Embryo' or `Reincarnate'. `Yeo' means `Nourish' or `Grow'. `See' means `Execute' or `Appoint'. `Seu' means `Injure' or `Sick'. The Houron Formula is: `Im=3+3xR[(y+3)/4]-5xR[(y+1)/2]+7xI[R[(y+3)/4]/3]+A[h/2] (Mod 12), Li=5xR[y/4]+5xR[(y+2)/4]-10xR[y/2]+5xI[R[(y+1)/4]/3]+A[h/2] (Mod 12), Ch=10-A[h/2] (Mod 12), Kk=4+A[h/2] (Mod 12), Hun=11-A[h/2] (Mod 12), Kip=11+A[h/2] (Mod 12), Tfu=6+A[h/2] (Mod 12), Fgo=2+A[h/2] (Mod 12)'.
Sen=8+3x(E-2)-9xI[E/4]+3xI[E/6] (Mod 12).
Muk={8+3x(E-2)-9xI[E/4]+3xI[E/6]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+1, R[(SC+y)/2]=1:-1}] (Mod 12).
Dai={8+3x(E-2)-9xI[E/4]+3xI[E/6]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+2, R[(SC+y)/2]=1:-2}] (Mod 12).
Lam={8+3x(E-2)-9xI[E/4]+3xI[E/6]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+3, R[(SC+y)/2]=1:-3}] (Mod 12).
Won={8+3x(E-2)-9xI[E/4]+3xI[E/6]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+4, R[(SC+y)/2]=1:-4}] (Mod 12).
Suy={8+3x(E-2)-9xI[E/4]+3xI[E/6]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+5, R[(SC+y)/2]=1:-5}] (Mod 12).
Bam=2+3x(E-2)-9xI[E/4]+3xI[E/6] (Mod 12).
Sei={8+3x(E-2)-9xI[E/4]+3xI[E/6]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+7, R[(SC+y)/2]=1:-7}] (Mod 12).
Moo={8+3x(E-2)-9xI[E/4]+3xI[E/6]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+8, R[(SC+y)/2]=1:-8}] (Mod 12).
Jut={8+3x(E-2)-9xI[E/4]+3xI[E/6]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+9, R[(SC+y)/2]=1:-9}] (Mod 12).
Toi={8+3x(E-2)-9xI[E/4]+3xI[E/6]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+10, R[(SC+y)/2]=1:-10}] (Mod 12).
Yeo={8+3x(E-2)-9xI[E/4]+3xI[E/6]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+11, R[(SC+y)/2]=1:-11}] (Mod 12).
See=5+m-A[h/2] (Mod 12). Seu=7+m-A[h/2] (Mod 12). `y' is the year of birth of a person after `Joint of Year' in Gregorian calendar. If the time of birth is before `Joint of February', it is regarded as previous year. `Joint of Year' is same as `Joint of February'. Usually, it is on 4th February. `m' is the month of birth of a person in Gregorian calendar after `Joint of Month'. If the time of birth of a person is before `Joint of Month', it is regarded as previous month. `h' is the time reckoning on a 24-hour base. `SC' is the `Sex Code' of a person. The `Sex Code' of male is `M' and m=0. The `Sex Code' of female is `F' and f=1. In general, the value of `m' is assigned to `0' and the value of `f' is `1'. The `Sex Code' of transsexual is the original sex at birth. The `Sex Code' of hermaphrodite (H), people have neutral sex (N) or genderless (N) could be either `M' or `F'. In this case, both sex codes should be used to check out which one is more accurate. `SM' is the `Spin Mode' of one's fortune. If SM=0, it means the `Spin Mode' is clockwise. If SM=1, it means the `Spin Mode' is anti-clockwise. `E' is the `Track' of one's personal characteristics. `R[m/n]' is a remainder function such that it takes the remainder of `m' divided by `n'. `n' is a natural number. Natural numbers are 1,2,3,4,5,……. Zero is not a natural number. `I[n]' is an integer function such that it takes the integral part of number `n' without rounding up the number. `A[n]' is an approximated integer function such that it takes the nearest whole number of `n'. `Houron=(Mod 12)' is a modulated function such that if Houron>11 then `Houron' becomes `Houron-12' and if Houron<0 then `Houron' becomes `Houron+12'. Thus, the value range of `Houron=(Mod 12)' is from 0 to 11. |
Example of Formula: Im | If y=1976 and h=0:45, applying the Houron Formula `Im=3+3xR[(y+3)/4]-5xR[(y+1)/2]+7xI[R[(y+3)/4]/3]+A[h/2] (Mod 12)', Im=3+3xR[(1976+3)/4]-5xR[(1976+1)/2]+7xI[R[(1976+3)/4]/3]+A[(0+45/60)/2] (Mod 12). Im=3+3xR[1979/4]-5xR[1977/2]+7xI[R[1979/4]/3]+A[0.75/2] (Mod 12). Im=3+3x3-5x1+7xI[3/3]+A[0.375] (Mod 12). Im=3+9-5+7xI[1]+0 (Mod 12). Im=7+7x1 (Mod 12). Im=7+7 (Mod 12). Im=14 (Mod 12). Im=14-12. Im=2. |
Example of Formula: Li | If y=1976 and h=0:45, applying the Houron Formula `Li=5xR[y/4]+5xR[(y+2)/4]-10xR[y/2]+5xI[R[(y+1)/4]/3]+A[h/2] (Mod 12)', Li=5xR[1976/4]+5xR[(1976+2)/4]-10xR[1976/2]+5xI[R[(1976+1)/4]/3]+A[(0+45/60)/2] (Mod 12). Li=5x0+5xR[1978/4]-10x0+5xI[R[1977/4]/3]+A[0.75/2] (Mod 12). Li=5x2-5xI[1/3]+A[0.375] (Mod 12). Li=10-5xI[0.333]+0 (Mod 12). Li=10-5x0 (Mod 12). Li=10-0 (Mod 12). Li=10 (Mod 12). Li=10. |
Example of Formula: Ch | If h=0:45, applying the Houron Formula `Ch=10-A[h/2] (Mod 12)', Ch=10-A[(0+45/60)/2] (Mod 12). Ch=10-A[0.75/2] (Mod 12). Ch=10-A[0.375] (Mod 12). Ch=10-0 (Mod 12). Ch=10 (Mod 12). Ch=10. |
Example of Formula: Kk | If h=0:45, applying the Houron Formula `Kk=4+A[h/2] (Mod 12)', Kk=4+A[(0+45/60)/2] (Mod 12). Kk=4+A[0.75/2] (Mod 12). Kk=4+A[0.375] (Mod 12). Kk=4+0 (Mod 12). Kk=4 (Mod 12). Kk=4. |
Example of Formula: Hun | If h=0:45, applying the Houron Formula `Hun=11-A[h/2] (Mod 12)', Hun=11-A[(0+45/60)/2] (Mod 12). Hun=11-A[0.75/2] (Mod 12). Hun=11-A[0.375] (Mod 12). Hun=11-0 (Mod 12). Hun=11 (Mod 12). Hun=11. |
Example of Formula: Kip | If h=0:45, applying the Houron Formula `Kip=11+A[h/2] (Mod 12)', Kip=11+A[(0+45/60)/2] (Mod 12). Kip=11+A[0.75/2] (Mod 12). Kip=11+A[0.375] (Mod 12). Kip=11+0 (Mod 12). Kip=11 (Mod 12). Kip=11. |
Example of Formula: Tfu | If h=0:45, applying the Houron Formula `Tfu=6+A[h/2] (Mod 12)', Tfu=6+A[(0+45/60)/2] (Mod 12). Tfu=6+A[0.75/2] (Mod 12). Tfu=6+A[0.375] (Mod 12). Tfu=6+0 (Mod 12). Tfu=6 (Mod 12). Tfu=6. |
Example of Formula: Fgo | If h=0:45, applying the Houron Formula `Fgo=2+A[h/2] (Mod 12)', Fgo=2+A[(0+45/60)/2] (Mod 12). Fgo=2+A[0.75/2] (Mod 12). Fgo=2+A[0.375] (Mod 12). Fgo=2+0 (Mod 12). Fgo=2 (Mod 12). Fgo=2. |
Example of Formula: Sen | If E=3, apply the Houron Formula `Sen=8+3x(E-2)-9xI[E/4]+3xI[E/6] (Mod 12)'. Sen=8+3x(3-2)-9xI[3/4]+3xI[3/6] (Mod 12). Sen=8+3x1-9xI[0.75]+3xI[0.5] (Mod 12). Sen=8+3-9x0+3x0 (Mod 12). Sen=11 (Mod 12). Sen=11. |
Example of Formula: Muk |
For male, the Sex Code (SC) is `M' and m=0. If y=2014 and E=2, apply the Houron Formula `Muk={8+3x(E-2)-9xI[E/4]+3xI[E/6]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+1, R[(SC+y)/2]=1:-1}] (Mod 12)'.
Muk={8+3x(2-2)-9xI[2/4]+3xI[2/6]}&C[R[(0+2014)/2]=0:+1, R[(0+2014)/2]=1:-1] (Mod 12).
Muk={8+3x0-9xI[0.5]+3xI[0.33]}&C[R[2014/2]=0:+1, R[2014/2]=1:-1] (Mod 12).
Muk={8-9x0+3x0}&C[0=0:+1, 0=1:-1] (Mod 12).
Muk=8&C[0=0:+1, 0=1:-1] (Mod 12).
Since the truth value of `&C[0=0]' is true and the truth value of `&C[0=1]' is false, the mathematical expression `+1' after the sign `:' should be operated.
Thus, Muk=8+1 (Mod 12). Muk=9 (Mod 12). Muk=9. |
Example of Formula: Dai |
For female, the Sex Code (SC) is `F' and f=1. If y=2011 and E=6, apply the Houron Formula `Dai={8+3x(E-2)-9xI[E/4]+3xI[E/6]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+2, R[(SC+y)/2]=1:-2}] (Mod 12)'.
Dai={8+3x(6-2)-9xI[6/4]+3xI[6/6]}&C[R[(1+2011)/2]=0:+2, R[(1+2011)/2]=1:-2] (Mod 12).
Dai={8+3x4-9xI[1.5]+3xI[1]}&C[R[2012)/2]=0:+2, R[2012/2]=1:-2] (Mod 12).
Dai={20-9x1+3x1}&C[0=0:+2, 0=1:-2] (Mod 12).
Dai=14&C[0=0:+2, 0=1:-2] (Mod 12).
Since the truth value of `&C[0=0]' is true and the truth value of `&C[0=1]' is false, the mathematical expression `+2' after the sign `:' should be operated.
Dai=14+2 (Mod 12). Dai=16 (Mod 12). Dai=16-12. Dai=4. |
Example of Formula: Lam |
For male, the Sex Code (SC) is `M' and m=0. If y=1995 and E=4, apply the Houron Formula `Lam={8+3x(E-2)-9xI[E/4]+3xI[E/6]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+3, R[(SC+y)/2]=1:-3}] (Mod 12)'.
Lam={8+3x(4-2)-9xI[4/4]+3xI[4/6]}&C[R[(0+1995)/2]=0:+3, R[(0+1995)/2]=1:-3] (Mod 12).
Lam={8+3x2-9xI[1]+3xI[0.66]}&C[R[1995/2]=0:+3, R[1995/2]=1:-3] (Mod 12).
Lam={14-9x1+3x0}&C[1=0:+3, 1=1:-3] (Mod 12).
Lam=5&C[1=0:+3, 1=1:-3] (Mod 12).
Since the truth value of `&C[1=0]' is false and the truth value of `&C[1=1]' is true, the mathematical expression `-3' after the sign `:' should be operated.
Lam=5-3 (Mod 12). Lam=2 (Mod 12). Lam=2. |
Example of Formula: Won |
For female, the Sex Code (SC) is `F' and f=1. If y=1997 and E=5, apply the Houron Formula `Won={8+3x(E-2)-9xI[E/4]+3xI[E/6]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+4, R[(SC+y)/2]=1:-4}] (Mod 12)'.
Won={8+3x(5-2)-9xI[5/4]+3xI[5/6]}&C[R[(1+1997)/2]=0:+4, R[(1+1997)/2]=1:-4] (Mod 12).
Won={8+3x3-9xI[1.25]+3xI[0.833]}&C[R[1998/2]=0:+4, R[1998/2]=1:-4] (Mod 12).
Won={17-9x1+3x0}&C[0=0:+4, 0=1:-4] (Mod 12).
Won=8&C[0=0:+4, 0=1:-4] (Mod 12).
Since the truth value of `&C[0=0]' is true and the truth value of `&C[0=1]' is false, the mathematical expression `+4' after the sign `:' should be operated.
Won=8+4 (Mod 12). Won=12 (Mod 12). Won=12-12. Won=0. |
Example of Formula: Suy |
For male, the Sex Code (SC) is `M' and m=0. If y=2017 and E=3, apply the Houron Formula `Suy={8+3x(E-2)-9xI[E/4]+3xI[E/6]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+5, R[(SC+y)/2]=1:-5}] (Mod 12)'.
Suy={8+3x(3-2)-9xI[3/4]+3xI[3/6]}&C[R[(0+2017)/2]=0:+5, R[(0+2017)/2]=1:-5] (Mod 12).
Suy={8+3x1-9xI[0.75]+3xI[0.5]}&C[R[2017/2]=0:+5, R[2017/2]=1:-5] (Mod 12).
Suy={11-9x0+3x0}&C[1=0:+5, 1=1:-5] (Mod 12).
Suy=11&C[1=0:+5, 1=1:-5] (Mod 12).
Since the truth value of `&C[1=0]' is false and the truth value of `&C[1=1]' is true, the mathematical expression `-5' after the sign `:' should be operated.
Suy=11-5 (Mod 12). Suy=6 (Mod 12). Suy=6. |
Example of Formula: Bam | If E=5, apply the Houron Formula `Bam=2+3x(E-2)-9xI[E/4]+3xI[E/6] (Mod 12)'. Bam=2+3x(5-2)-9xI[5/4]+3xI[5/6] (Mod 12). Bam=2+3x3-9xI[1.25]+3xI[0.833] (Mod 12). Bam=2+9-9x1+3x0 (Mod 12). Bam=11-9+0 (Mod 12). Bam=2 (Mod 12). Bam=2. |
Example of Formula: Sei |
For female, the Sex Code (SC) is `F' and f=1. If y=2003 and E=2, apply the Houron Formula `Sei={8+3x(E-2)-9xI[E/4]+3xI[E/6]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+7, R[(SC+y)/2]=1:-7}] (Mod 12)'.
Sei={8+3x(2-2)-9xI[2/4]+3xI[2/6]}&C[R[(1+2003)/2]=0:+7, R[(1+2003)/2]=1:-7] (Mod 12).
Sei={8+3x0-9xI[0.5]+3xI[0.33]}&C[R[2004/2]=0:+7, R[2004/2]=1:-7] (Mod 12).
Sei={8-9x0+3x0}&C[0=0:+7, 0=1:-7] (Mod 12).
Sei=8&C[0=0:+7, 0=1:-7] (Mod 12).
Since the truth value of `&C[0=0]' is true and the truth value of `&C[0=1]' is false, the mathematical expression `+7' after the sign `:' should be operated.
Sei=8+7 (Mod 12). Sei=15 (Mod 12). Sei=15-12. Sei=3. |
Example of Formula: Moo |
For male, the Sex Code (SC) is `M' and m=0. If y=2014 and E=6, apply the Houron Formula `Moo={8+3x(E-2)-9xI[E/4]+3xI[E/6]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+8, R[(SC+y)/2]=1:-8}] (Mod 12)'.
Moo={8+3x(6-2)-9xI[6/4]+3xI[6/6]}&C[R[(0+2014)/2]=0:+8, R[(0+2014)/2]=1:-8] (Mod 12).
Moo={8+3x4-9xI[1.5]+3xI[1]}&C[R[2014/2]=0:+8, R[2014/2]=1:-8] (Mod 12).
Moo={20-9x1+3x1}&C[0=0:+8, 0=1:-8] (Mod 12).
Moo=14&C[0=0:+8, 0=1:-8] (Mod 12).
Since the truth value of `&C[0=0]' is true and the truth value of `&C[0=1]' is false, the mathematical expression `+8' after the sign `:' should be operated.
Moo=14+8 (Mod 12). Moo=22 (Mod 12). Moo=22-12. Moo=10. |
Example of Formula: Jut |
For female, the Sex Code (SC) is `F' and f=1. If y=1994 and E=4, apply the Houron Formula `Jut={8+3x(E-2)-9xI[E/4]+3xI[E/6]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+9, R[(SC+y)/2]=1:-9}] (Mod 12)'.
Jut={8+3x(4-2)-9xI[4/4]+3xI[4/6]}&C[R[(1+1994)/2]=0:+9, R[(1+1994)/2]=1:-9] (Mod 12).
Jut={8+3x2-9xI[1]+3xI[0.666]}&C[R[1995/2]=0:+9, R[1995/2]=1:-9] (Mod 12).
Jut={14-9x1+3x0}&C[1=0:+9, 1=1:-9] (Mod 12).
Jut=5&C[1=0:+9, 1=1:-9] (Mod 12).
Since the truth value of `&C[1=0]' is false and the truth value of `&C[1=1]' is true, the mathematical expression `-9' after the sign `:' should be operated.
Jut=5-9 (Mod 12). Jut= -4 (Mod 12). Jut=12-4. Jut=8. |
Example of Formula: Toi |
For male, the Sex Code (SC) is `M' and m=0. If y=1973 and E=5, apply the Houron Formula `Toi={8+3x(E-2)-9xI[E/4]+3xI[E/6]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+10, R[(SC+y)/2]=1:-10}] (Mod 12)'.
Toi={8+3x(5-2)-9xI[5/4]+3xI[5/6]}&C[R[(0+1973)/2]=0:+10, R[(0+1973)/2]=1:-10] (Mod 12).
Toi={8+3x3-9xI[1.25]+3xI[0.833]}&C[R[1973/2]=0:+10, R[1973/2]=1:-10] (Mod 12).
Toi={17-9x1+3x0}&C[1=0:+10, 1=1:-10] (Mod 12).
Toi=8&C[1=0:+10, 1=1:-10] (Mod 12).
Since the truth value of `&C[1=0]' is false and the truth value of `&C[1=1]' is true, the mathematical expression `-10' after the sign `:' should be operated.
Toi=8-10 (Mod 12). Toi= -2 (Mod 12). Toi=12-2. Toi=10. |
Example of Formula: Yeo |
For female, the Sex Code (SC) is `F' and f=1. If y=2019 and E=3, apply the Houron Formula `Yeo={8+3x(E-2)-9xI[E/4]+3xI[E/6]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+11, R[(SC+y)/2]=1:-11}] (Mod 12)'.
Yeo={8+3x(3-2)-9xI[3/4]+3xI[3/6]}&C[R[(1+2019)/2]=0:+11, R[(1+2019)/2]=1:-11] (Mod 12).
Yeo={8+3x1-9xI[0.75]+3xI[0.5]}&C[R[2020/2]=0:+11, R[2020/2]=1:-11] (Mod 12).
Yeo={11-9x0+3x0}&C[0=0:+11, 0=1:-11] (Mod 12).
Yeo=11&C[0=0:+11, 0=1:-11] (Mod 12).
Since the truth value of `&C[0=0]' is true and the truth value of `&C[0=1]' is false, the mathematical expression `+11' after the sign `:' should be operated.
Yeo=11+11 (Mod 12). Yeo=22 (Mod 12). Yeo=22-12. Yeo=10. |
Example of Formula: See | If m=7 and h=23:39:42, applying the Houron Formula `See=5+m-A[h/2] (Mod 12)', See=5+7-A[(23+39/60+42/360)/2] (Mod 12). See=12-A[(23+0.65+0.117)/2] (Mod 12). See=12-A[(23.767)/2] (Mod 12). See=12-A[11.883] (Mod 12). See=12-12 (Mod 12). See=0 (Mod 12). See=0. |
Example of Formula: Seu | If m=12 and h=5:20:40, applying the Houron Formula `Seu=7+m-A[h/2] (Mod 12)', Seu=7+12-A[(5+20/60+40/360)/2] (Mod 12). Seu=19-A[(5+0.333+0.111)/2] (Mod 12). Seu=19-A[(5.444)/2] (Mod 12). Seu=19-A[2.722] (Mod 12). Seu=19-3 (Mod 12). Seu=16 (Mod 12). Seu=16-12. Seu=4. |