Explanation | By observation, some timeons were proved also have influences on different time intervals. Their formulae can be generalized to apply in differnt time intervals like millennium, century, decade, year, month, day, 2 hours, 10 minutes, 50 seconds and 4.17 seconds. These timeons are:
1.`Cfu', 2.`Luk', 3.`Yeu', 4.`Tor', 5.`Fui', 6.`Eut', 7.`Chw', 8.`Kkw', 9.`Fkw', 10.`Gkw', 11.`Jkw', 12.`Tyh', 13.`Gun', 14.`Fuk', 15.`Tyn' , 16.`Hok' , 17.`Chu' , 18.`Har' , 19.`Yue' , 20.`Yim' , 21.`Jit' , 22.`Ch', 23.`Kk', 24.`Hun', 25.`Kip', 26.`Tfu', 27.`Fgo', 28.`Que/Kar', 29.`Lun', 30.`Hei', 31.`Ham', 32.`Yiu', 33.`Tmo', 34.`Tyu', 35.`Yst', 36.`Kam', 37.`Hui', 38.`Huk', 39.`Chi', 40.`Kok', 41.`Cip', 42.`Joi', 43.`Tst', 44.`Sha', 45.`Psu', 46.`Yng', 47.`Hoi', 48.`Por', 49.`Hoo', 50.`Yoo', 51.`Ylm', 52.`Ysa', 53.`Yaa', 54.`Cso', 55.`Yjm', 56.`Hut', 57.`Chm', 58.`Pan', 59.`Yik', 60.`Wah', 61.`Zhi', 62.`Yut', 63.`Goo', 64.`Gwa', 65.`Jfg', 66.`Fei', 67.`Yee', 68.`Yei', 69.`Kwy', 70.`Kim', 71.`Zee', 72.`Bau', 73.`Can', 74.`Sui', 75.`Nik', 76.`Yuk', 77.`Cak', 78.`Tdo', 79.`Tng', 80.`Pik', 81.`Lfo', 82.`Fym', 83.`Aat', 84.`Hom', 85.`Kun', 86.`Sfu', 87.`Buy', 88.`Ark', 89.`Foo', 90.`Gau', 91.`Sit', 92.`Diu', 93.`Bag', 94.`Sok', 95.`Sik', 96.`Sog', 97.`Mon', 98.`Lup', 99.`Gak', 100.`Ysi', 101.`Inc', 102.`Win', 103.`Los', 104.`Hop', 105.`Cxy', 106.`Hak', 107.`Jwo', 108.`Jwo2', 109.`Jwo3', 110.`Jwo4', 111.`Jwo5', 112.`Chn' & `Chn2'.
`Cfu' means `Wealth' or `Property'. `Luk' means `Power' or `Wealth'. `Yeu' means `Injury' or `Destruction'. `Tor' means `Injury' or `Destruction'. `Fui' means `Outstanding'. `Eut' means `Outstanding'. `Chw' means `Knowledge' or `Education'. `Kkw' means `Oration' or `Music'. `Fkw' means `Felicity' or `Longevity'. `Gkw' means `Religion' or `Fortune-telling'. `Jkw' means `Peerage' or `Power'. `Tyh' means `Official' or `Power'. `Gun' means `Promotion' or `Childbirth'. `Fuk' means `Felicity' or `Childbirth'. `Tyn' means `Grace'. `Hok' means `Learning' or `Hall'. `Chu' means `Eating' or `Food'. `Har' means `Aboard' or `Childbirth'. `Yue' means `Vehicle' or `Transportation'. `Yim' means `Lascivious', `Masturbation' or `Blood'. `Jit' means `Stop' or `Nil'. `Ch' means `Literacy' or `Writing'. `Kk' means `Eloquence' or `Speaking'. `Hun' means `Loss',`Nil' or `Flight'. `Kip' means `Robbery' or `Disaster'. `Tfu' means `Success' or `Award'. `Fgo' means `Entitlement', `Mandate' or `Achieve'. `Que/Kar' means `Love' or `Marriage'. `Lun' means `Female', `Marriage' or `Blood'. `Hei' means `Happiness' or `Pregnancy'. `Ham' means `Lustful', `Masturbate' or `Adultery'. `Yiu' means `Coquetry' or `Intercourse'. `Tmo' means `Religion' or `Fortune-telling'. `Tyu' means `Sick' or `Disease'. `Yst' means `Conspiracy' or `Plot'. `Kam' means `Wealth' or `Money'. `Hui' means `Weakness' or `Empty'. `Huk' means `Sorrow' or `Loss'. `Chi' means `Arts' or `Place'. `Kok' means `Design' or `Room'. `Cip' means `Robbery' or `Kidnapping'. `Joi' means `Calamity' or `Disaster'. `Tst' means `Smite' or `Kill'. `Sha' means `Gauze' or `Marriage'. `Psu' means `Puncture' or `Wounded'. `Yng' means `Wounded' or `Surgery'. `Hoi' means `Disaster' or `Sickness'. `Por' means `Puncture' or `Broken'. `Hoo' means `Consumption' or `Exhaustion'. `Yoo' means `Spend' or `Loss'. `Ylm' means `Sick' or `Injury'. `Ysa' means `Lawsuit' or `Disaster'. `Yaa' means `Confuse' or `Loss'. `Cso' means `Wealthy' or `Honour'. `Yjm' means `Leader' or `Brave'. `Hut' means `Bleeding' or `Hurt'. `Chm' means `Brave' or `Fierce'. `Pan' means `Promotion' or `Travel'. `Yik' means `Ride' or `Motion'. `Wah' means `Religion' or `Fortune-telling'. `Zhi' means `Accusation' or `Targeting'. `Yut' means `Smite' or `Kill'. `Goo' means `Loneliness' or `Detention'. `Gwa' means `Sleep alone' or `Detention'. `Jfg' means `Sexual dysfunction' or `No intercourse'. `Fei' means `Lonliness', `Plague' or `Flight'. `Yee' means `Cure' or `Disease'. `Yei' means `Medical treatment' or `Doctor'. `Kwy' means `Peerage'. `Kim' means `War' or `Wound'. `Zee' means `Fall down' or `Dead body'. `Bau' means `Pregnancy', `Childbirth' or `Tumor'. `Can' means `Parturition', `Reincarnation' or `Tumor'. `Sui' means `Flood' or `Fluid'. `Nik' means `Water' or `Drown'. `Yuk' means `Detention' or `Imprison'. `Cak' means `Thief' or `Steal'. `Tdo' means `Thief' or `Steal'. `Tng' means `Bang' or `Thunder'. It stands for great sound of collision or explosion. `Pik' means `Bang' or `Thunder'. `Lfo' means `Bombard', `Gunshot' or `Radiation'. `Fym' means `Fire', `Burning' or `Radiation'. `Aat' means `Collapse' or `Death'. `Hom' means `Pitfall' or `Swallow'. `Kun' means `Police' or `Litigation'. `Sfu' means `Death order' or `Sick'. `Buy' means `Loss' or `Destruction'. `Ark' means `Danger' or `Disaster'. `Foo' means `Sick' or `Murder'. `Gau' means `Bondage' or `Twist'. `Sit' means `Talk', `Quarrel', `Eat' or `Lick'. `Diu' means `Condolence' or `Console'. `Bag' means `Influenza' or `Sick'. `Sok' means `Seizing', `Bondage', `Rope' or `Umbilical cord'. `Sik' means `Rest' or `Dead'. `Sog' means `Death' or `Mourning'. `Mon' means `Death' or `Loss'. `Lup' means `Love' or `Marriage'. `Gak' means `Quarantine' or `Quarrel'. `Ysi' means `Assassinate' or `Trap'. `Inc' means `Income' or `Salary'. `Win' means `Win' or `Gift'. `Los' means `Loss' or `Failure'. `Hop' means `Love' or `Marriage'. `Cxy' means `Suppression' or `Injury'. `Hak' means `Sick', `Adversity' or `Departure'. `Jwo' means `Natural disaster' or `War'. `Jwo2' means `Natural disaster' or `War'. `Jwo3' means `Natural disaster' or `War'. `Jwo4' means `Natural disaster' or `War'. `Jwo5' means `Natural disaster' or `War'. `Chn' & `Chn2' mean `Empty', `Loss' or `Extermination'.
Generally speaking, some timeons of year or month can be applied generally for day. The time codes of these timeons are:
1.`Dco', 2.`Dlu', 3.`Dyo', 4.`Dto', 5.`Dfi', 6.`Deu', 7.`Dck', 8.`Dkk', 9.`Dkw', 10.`Dkg', 11.`Dje', 12.`Duh', 13.`Dkn', 14.`Dfk', 15.`Dyn', 16.`Dhk', 17.`Dcu', 18.`Dha', 19.`Dyu', 20.`Dym', 21.`Djt', 22.`Dch', 23.`Dko', 24.`Dhn', 25.`Dkp', 26.`Dtf', 27.`Dfg', 28.`Dqe/Dka', 29.`Dln', 30.`Dhe', 31.`Dhm', 32.`Dil', 33.`Dmo', 34.`Dty', 35.`Dys', 36.`Dkm', 37.`Dhu', 38.`Dku', 39.`Dci', 40.`Dok', 41.`Dcp', 42.`Djy', 43.`Dtn', 44.`Dsa', 45.`Dsu', 46.`Dyg', 47.`Dhi', 48.`Dpr', 49.`Dho', 50.`Dft', 51.`Dlm', 52.`Dyx', 53.`Daa', 54.`Dcs', 55.`Dyj', 56.`Dht', 57.`Djm', 58.`Dpn', 59.`Dyk', 60.`Dwa', 61.`Dzi', 62.`Dyt', 63.`Dgo', 64.`Dga', 65.`Djf', 66.`Dfe', 67.`Dye', 68.`Dyi', 69.`Dgw', 70.`Dim', 71.`Dss', 72.`Dbw', 73.`Dan', 74.`Dsi', 75.`Dik', 76.`Duk', 77.`Dak', 78.`Ddo', 79.`Dtg', 80.`Dpk', 81.`Dli', 82.`Dfo', 83.`Dat', 84.`Dhg', 85.`Dfu', 86.`Dsy', 87.`Dbi', 88.`Drk', 89.`Dff', 90.`Dju', 91.`Dit', 92.`Ddu', 93.`Dbg', 94.`Dso', 95.`Dse', 96.`Dsg', 97.`Dmg', 98.`Dup', 99.`Dgk', 100.`Dsh', 101.`Dcm', 102.`Dwn', 103.`Dls', 104.`Dhp', 105.`Dxy', 106.`Dkx', 107.`Dwo', 108.`Dwo2', 109.`Dwo3', 110.`Dwo4', 111.`Dwo5', 112.`Dcn' & `Dcn2'.
`Dco' means `Wealth' or `Property'. `Dlu' means `Power' or `Wealth'. `Dyo' means `Injury' or `Destruction'. `Dto' means `Injury' or `Destruction'. `Dfi' means `Outstanding'. `Deu' means `Outstanding'. `Dck' means `Knowledge' or `Education'. `Dkk' means `Oration' or `Music'. `Dkw' means `Happiness' or `Longevity'. `Dkg' means `Religion' or `Fortune-telling'. `Dje' means `Peerage' or `Power'. `Duh' means `Official' or `Power'. `Dkn' means `Promotion' or `Childbirth'. `Dfk' means `Felicity' or `Childbirth'. `Dyn' means `Grace'. `Dhk' means `Learning' or `Hall'. `Dcu' means `Eating' or `Food'. `Dha' means `Aboard' or `Childbirth'. `Dyu' means `Vehicle' or `Transportation'. `Dym' means `Lascivious' or `Masturbation'. `Djt' means `Stop' or `Nil'. `Dch' means `Literacy' or `Writing'. `Dko' means `Eloquence' or `Speaking'. `Dhn' means `Loss',`Nil' or `Flight'. `Dkp' means `Robbery' or `Disaster'. `Dtf' means `Success' or `Award'. `Dfg' means `Entitlement', `Mandate' or `Achieve'. `Dqe/Dka' means `Love' or `Marriage'. `Dln' means `Female', `Marriage' or `Blood'. `Dhe' means `Happiness' or `Pregnancy'. `Dhm' means `Lustful', `Masturbate' or `Adultery'. `Dil' means `Coquetry' or `Intercourse'. `Dmo' means `Religion' or `Fortune-telling'. `Dty' means `Sick' or `Disease'. `Dys' means `Conspiracy' or `Plot'. `Dkm' means `Wealth' or `Money'. `Dhu' means `Weakness' or `Empty'. `Dku' means `Sorrow' or `Loss'. `Dci' means `Arts' or `Place'. `Dok' means `Design' or `Room'.`Dcp' means `Robbery' or `Kidnapping'. `Djy' means `Calamity' or `Disaster'. `Dtn' means `Smite male' or `Kill'. `Dsa' means `Gauze' or `Marriage'. `Dsu' means `Puncture' or `Wounded'. `Dyg' means `Wounded' or `Surgery'. `Dhi' means `Disaster' or `Sickness'. `Dpr' means `Destroy' or `Break'. `Dho' means `Consumption' or `Exhaustion'. `Dft' means `Spend' or `Loss'. `Dlm' means `Sick' or `Injury'. `Dyx' means `Lawsuit' or `Disaster'. `Daa' means `Confuse' or `Loss'. `Dcs' means `Wealthy' or `Honour'. `Dyj' means `Leader' or `Brave'. `Dht' means `Bleeding' or `Hurt'. `Djm' means `Bravery'. `Dpn' means `Promotion' or `Travel'. `Dyk' means `Ride' or `Motion'. `Dwa' means `Religion' or `Fortune-telling'. `Dzi' means `Accusation' or `Targeting'. `Dyt' means `Injury' or `Kill'. `Dgo' means `Loneliness' or `Detention'. `Dga' means `Sleep alone' or `Detention'. `Djf' means `Sexual dysfunction' or `No intercourse'. `Dfe' means `Lonliness', `Plague' or `Flight'. `Dye' means `Cure' or `Disease'. `Dyi' means `Medical treatment' or `Doctor'. `Dgw' means `Peerage'. `Dim' means `War' or `Wound'. `Dss' means `Fall down' or `Dead body'. `Dbw' means `Pregnancy', `Childbirth' or `Tumor'. `Dan' means `Parturition', `Reincarnation' or `Tumor'. `Dsi' means `Flood' or `Water'. `Dik' means `Water' or `Drown'. `Duk' means `Detention' or `Imprison'. `Dak' means `Thief' or `Steal'. `Ddo' means `Thief' or `Steal'. `Dtg' means `Bang' or `Thunder'. `Dpk' means `Bang' or `Thunder'. `Dli' means `Bombard', `Gunshot' or `Radiation'. `Dfo' means `Fire', `Burning' or `Radiation'. `Dat' means `squashed' or `squeezed'. `Dhg' means `Pitfall' or `Swallow'. `Dfu' means `Police' or `Litigation'. `Dsy' means `Death order' or `Sick'. `Dbi' means `Loss' or `Destruction'. `Drk' means `Danger' or `Disaster'. `Dff' means `Sick' or `Murder'. `Dju' means `Bondage' or `Twist'. `Dit' means `Talk', `Quarrel', `Eat' or `Lick'. `Ddu' means `Condolence' or `Console'. `Dbg' means `Influenza' or `Sick'. `Dso' means `Seizing', `Bondage', `Rope' or `Umbilical cord'. `Dse' means `Rest' or `Dead'. `Dsg' means `Death' or `Mourning'. `Dmg' means `Death' or `Loss'. `Dup' means `Love' or `Marriage'. `Dgk' means `Quarantine' or `Quarrel'. `Dsh' means `Assassinate' or `Trap'. `Dcm' means `Income' or `Salary'. `Dwn' means `Win' or `Gift'. `Dls' means `Loss' or `Failure'. `Dhp' means `Love' or `Marriage'. `Dxy' means `Suppression' or `Injury'. `Dkx' means `Sick', `Adversity' or `Departure'. `Dwo' means `Natural disaster' or `War'. `Dwo2' means `Natural disaster' or `War'. `Dwo3' means `Natural disaster' or `War'. `Dwo4' means `Natural disaster' or `War'. `Dwo5' means `Natural disaster' or `War'. `Dcn' & `Dcn2' mean `Empty', `Loss' or `Extermination'.
There are five Earth's Great Disaster Formulae (Jwo, Jwo2, Jwo3, Jwo4 & Jwo5) in terms of `U' for year `y' in B.C. whereas `i' is an imaginary number which means `Unknown' or `Indeterminate'. The Earth's Great Disaster Formulae are:
Jwo={Jwo=6+3xI[U/2]-5xI[U/3]-2xI[U/4]-I[U/5]+3xI[U/6]-5xI[U/7]+2xI[U/8]-I[U/10] (Mod 12) & Z=9-y (Mod 12)}&C[Jwo<>Z:Jwo=i]. This formula is derived from `Tor' meets `Opposite Zone' of `Year Root' (Z), or `Year Stem' (U) meets `Timeons' of `Sei', `Moo' or `Jut'.
Jwo2={Jwo2=8+3xI[U/2]-5xI[U/3]-2xI[U/4]-I[U/5]+3xI[U/6]-5xI[U/7]+2xI[U/8]-I[U/10] (Mod 12) & Z=9-y (Mod 12)}&C[Jwo2<>Z:Jwo2=i]. This formula is derived from `Yeu' meets `Opposite Zone' of `Year Root' (Z), or `Year Stem' (U) meets `Timeons' of `Sei', `Moo' or `Jut'.
Jwo3={Jwo3=2+U+I[U/3]-2xI[U/5]-I[U/6]+I[U/7]+2xI[U/10] (Mod 12) & Yeu=3-y (Mod 12)}&C[Jwo3<>Yeu:Jwo3=i]. This formula is derived from `Yeu' meets `Year Root' (Z), or `Year Stem' (U) meets `Timeons' of `Sei', `Moo' or `Jut'.
Jwo4={Jwo4=U+I[U/3]-2xI[U/5]-I[U/6]+I[U/7]+2xI[U/10] (Mod 12) & Tor=3-y (Mod 12)}&C[Jwo4<>Tor:Jwo4=i]. This formula is derived from `Tor' meets `Year Root' (Z), or `Year Stem' (U) meets `Timeons' of `Sei', `Moo' or `Jut'.
Jwo5={Jwo5=U & Z=9-y (Mod 12)}&C[(Jwo5<>6,8 & Z<>2,4,5,6,8,9,11):Jwo5=i]. This formula is derived from `Lfo', `Pik' or `Yng' meets `Year Root' (Z).
There are five Earth's Great Disaster Formulae (Jwo, Jwo2, Jwo3, Jwo4 & Jwo5) in terms of `U' for year `y' in A.D. whereas `i' is an imaginary number which means `Unknown' or `Indeterminate'. The Earth's Great Disaster Formulae are:
Jwo={Jwo=6+3xI[U/2]-5xI[U/3]-2xI[U/4]-I[U/5]+3xI[U/6]-5xI[U/7]+2xI[U/8]-I[U/10] (Mod 12) & Z=8+y (Mod 12)}&C[Jwo<>Z:Jwo=i]. This formula is derived from `Tor' meets `Opposite Zone' of `Year Root' (Z), or `Year Stem' (U) meets `Timeons' of `Sei', `Moo' or `Jut'.
Jwo2={Jwo2=8+3xI[U/2]-5xI[U/3]-2xI[U/4]-I[U/5]+3xI[U/6]-5xI[U/7]+2xI[U/8]-I[U/10] (Mod 12) & Z=8+y (Mod 12)}&C[Jwo2<>Z:Jwo2=i]. This formula is derived from `Yeu' meets `Opposite Zone' of `Year Root' (Z), or `Year Stem' (U) meets `Timeons' of `Sei', `Moo' or `Jut'.
Jwo3={Jwo3=2+U+I[U/3]-2xI[U/5]-I[U/6]+I[U/7]+2xI[U/10] (Mod 12) & Yeu=2+y (Mod 12)}&C[Jwo3<>Yeu:Jwo3=i]. This formula is derived from `Yeu' meets `Year Root' (Z), or `Year Stem' (U) meets `Timeons' of `Sei', `Moo' or `Jut'.
Jwo4={Jwo4=U+I[U/3]-2xI[U/5]-I[U/6]+I[U/7]+2xI[U/10] (Mod 12) & Tor=2+y (Mod 12)}&C[Jwo4<>Tor:Jwo4=i]. This formula is derived from `Tor' meets `Year Root' (Z), or `Year Stem' (U) meets `Timeons' of `Sei', `Moo' or `Jut'.
Jwo5={Jwo5=U & Z=8+y (Mod 12)}&C[(Jwo5<>6,8 & Z<>2,4,5,6,8,9,11):Jwo5=i]. This formula is derived from `Lfo', `Pik' or `Yng' meets `Year Root' (Z).
Timeons General Formulae are:
Sen=11-5xI[U/2]-4xI[U/3]+5xI[U/5]+4xI[U/6]+8xI[U/7]-5xI[U/10] (Mod 12).
Muk=2-2U+7xI[U/2]-3xI[U/5]+3xI[U/10] (Mod 12).
Dai=U+2xI[U/2]-I[U/3]-4xI[U/5]+I[U/6]-I[U/7]-8xI[U/10] (Mod 12).
Lam=2+I[U/2]+2xI[U/3]-I[U/5]-2xI[U/6]+2xI[U/7]+I[U/10] (Mod 12).
Won=3-I[U/2]+4xI[U/3]+I[U/5]-4xI[U/6]+4xI[U/7]-I[U/10] (Mod 12).
Suy=4-3xI[U/2]+6xI[U/3]+3xI[U/5]+6xI[U/6]+6xI[U/7]-3xI[U/10] (Mod 12).
Bam=5-5xI[U/2]+8xI[U/3]+5xI[U/5]-8xI[U/6]+8xI[U/7] (Mod 12).
Sei=6+5xI[U/2]-2xI[U/3]-5xI[U/5]+2xI[U/6]-2xI[U/7]-7xI[U/10] (Mod 12).
Moo=7+3xI[U/2]-3xI[U/5]-9xI[U/10] (Mod 12).
Jut=8+I[U/2]+2xI[U/3]-I[U/5]-2xI[U/6]+2xI[U/8]+I[U/10] (Mod 12).
Toi=9-I[U/2]+4xI[U/3]+I[U/5]-4xI[U/6]-8xI[U/7]-I[U/10] (Mod 12).
Yeo=10-3xI[U/2]-6xI[U/3]+3xI[U/5]+6xI[U/6]-6xI[U/7]-3xI[U/10] (Mod 12).
If `U' is `Stem' of any Time Code (TC) and `Ego' is `Day Stem' at birth, Inc: Ego=(U+7)&C{R[U/2]=0:-2} (Mod 10).
If `U' is `Stem' of any Time Code (TC) and `Ego' is `Day Stem' at birth, Win: Ego=U+6 (Mod 10).
If `U' is `Stem' of any Time Code (TC) and `Ego' is `Day Stem' at birth, Los: Ego=(U-1)&C{R[U/2]=1:+2} (Mod 10).
Cfu=10+3xI[U/3]-9xI[U/5]-3xI[U/6]+3xI[U/7]+9xI[U/10] (Mod 12).
Luk=1+U+I[U/3]-2xI[U/5]-I[U/6]+I[U/7]+2xI[U/10] (Mod 12).
Yeu=2+U+I[U/3]-2xI[U/5]-I[U/6]+I[U/7]+2xI[U/10] (Mod 12).
Tor=U+I[U/3]-2xI[U/5]-I[U/6]+I[U/7]+2xI[U/10] (Mod 12).
Remark: `Yeu' & `Tor' are interchangeable in pairs. If
Yeu=2+R[U/2]+3xI[U/3]-3xI[U/6]+3xI[U/7] (Mod 12) then
Tor=U+2xI[U/2]-I[U/3]-4xI[U/5]+I[U/6]-I[U/7]-8xI[U/10] (Mod 12).
Fui=6+U+I[U/4]+I[U/5]-2xI[U/6]-I[U/8] (Mod 12).
Eut=2-U-I[U/4]-I[U/5]+2xI[U/6]+I[U/8] (Mod 12).
Chw=4+U+I[U/3]-2xI[U/5]-I[U/6]+I[U/7]+2xI[U/10] (Mod 12).
Kkw=10-U-I[U/3]+2xI[U/5]+I[U/6]-I[U/7]-2xI[U/10] (Mod 12).
Fkw=(1-U)&C[U<4:3-U] (Mod 12).
Gkw={1-U-5xI[U/2]+4xI[U/3]+3xI[U/7]+7xI[U/8]-I[U/9]}&C[U=5:4,10]&C[U=6:1,7] (Mod 12).
Jkw={5+3xR[(U-1)/2]}&C{U>6:11-9xR[(U-1)/2]} (Mod 12).
Tyh=1-U+5xI[U/3]+5xI[U/5]-5xI[U/6]+2xI[U/7]-5xI[U/10] (Mod 12).
Gun=6+U-4xI[U/2]+9xI[U/6]+I[U/7]+I[U/8]-I[U/10] (Mod 12).
Fuk=10-U+5xI[U/3]-7xI[U/5]-5xI[U/6]+5xI[U/7]-3xI[U/9]+7xI[U/10] (Mod 12).
Tyn=5-3xR[U/5]+I[{R[U/5]}/4] (Mod 12).
Hok=11-5xI[U/2]-4xI[U/3]+5xI[U/5]+4xI[U/6]-4xI[U/7]+7xI[U/10] (Mod 12).
Chu=4+U+5xI[U/3]+4xI[U/4]+8xI[U/6]-7xI[U/7]-I[U/8]-3xI[U/9]+I[U/10] (Mod 12).
Har=2+7U-6xI[U/2]-10xI[U/3]+2xI[U/5]-2xI[U/6]+3xI[U/7]-2xI[U/8]-I[U/9] (Mod 12).
Yue=3+U+I[U/3]-2xI[U/5]-I[U/6]+I[U/7]+2xI[U/10] (Mod 12).
Yim=4+2U-8xI[U/3]+3xI[U/4]-5xI[U/5]+6xI[U/6]+4xI[U/7]-6xI[U/8]-3xI[U/9]-I[U/10] (Mod 12).
Jit=10-2U-I[U/6] (Mod 12).
Bos=1+U+I[U/3]-I[U/5]-2xI[U/6]+I[U/7]+I[U/10] (Mod 12) or Bos=Luk.
Lis=&C[(SC:m=0, f=1) & {R[(SC+U)/2]=0:-1, R[(SC+U)/2]=1:+1}]+Bos (Mod 12) or Lis=&C[(SC:m=0, f=1) & {R[(SC+U)/2]=0:-1, R[(SC+U)/2]=1:+1}]+1+U+I[U/3]-I[U/5]-2xI[U/6]+I[U/7]+I[U/10] (Mod 12).
Clu=&C[(SC:m=0, f=1) & {R[(SC+U)/2]=0:-2, R[(SC+U)/2]=1:+2}]+1+U+I[U/3]-I[U/5]-2xI[U/6]+I[U/7]+I[U/10] (Mod 12).
Sho=&C[(SC:m=0, f=1) & {R[(SC+U)/2]=0:-3, R[(SC+U)/2]=1:+3}]+1+U+I[U/3]-I[U/5]-2xI[U/6]+I[U/7]+I[U/10] (Mod 12).
Ckn=&C[(SC:m=0, f=1) & {R[(SC+U)/2]=0:-4, R[(SC+U)/2]=1:+4}]+1+U+I[U/3]-I[U/5]-2xI[U/6]+I[U/7]+I[U/10] (Mod 12).
Csu=&C[(SC:m=0, f=1) & {R[(SC+U)/2]=0:-5, R[(SC+U)/2]=1:+5}]+1+U+I[U/3]-I[U/5]-2xI[U/6]+I[U/7]+I[U/10] (Mod 12).
Lim=7+U+I[U/3]-I[U/5]-2xI[U/6]+I[U/7]+I[U/10] (Mod 12) or Lim=6+Luk (Mod 12) or Lim=6+Bos (Mod 12).
Hee=&C[(SC:m=0, f=1) & {R[(SC+U)/2]=0:-7, R[(SC+U)/2]=1:+7}]+1+U+I[U/3]-I[U/5]-2xI[U/6]+I[U/7]+I[U/10] (Mod 12).
Cbm=&C[(SC:m=0, f=1) & {R[(SC+U)/2]=0:-8, R[(SC+U)/2]=1:+8}]+1+U+I[U/3]-I[U/5]-2xI[U/6]+I[U/7]+I[U/10] (Mod 12).
Bai=&C[(SC:m=0, f=1) & {R[(SC+U)/2]=0:-9, R[(SC+U)/2]=1:+9}]+1+U+I[U/3]-I[U/5]-2xI[U/6]+I[U/7]+I[U/10] (Mod 12).
Fbg=&C[(SC:m=0, f=1) & {R[(SC+U)/2]=0:-10, R[(SC+U)/2]=1:+10}]+1+U+I[U/3]-I[U/5]-2xI[U/6]+I[U/7]+I[U/10] (Mod 12).
Kfu=&C[(SC:m=0, f=1) & {R[(SC+U)/2]=0:-11, R[(SC+U)/2]=1:+11}]+1+U+I[U/3]-I[U/5]-2xI[U/6]+I[U/7]+I[U/10] (Mod 12).
If `Z' is `Root' of any Time Code (TC) and `Ego' is `Day Stem' at birth, Inc: Ego=5-4Z+11xI[Z/2]+3xI[Z/3]+I[Z/6]-4xI[Z/7]+2xI[Z/8]-6xI[Z/9]-8xI[Z/10]-4xI[Z/11] (Mod 12).
If `Z' is `Root' of any Time Code (TC) and `Ego' is `Day Stem' at birth, Win: Ego=6-4Z+9xI[Z/2]+5xI[Z/3]-9xI[Z/6]-4xI[Z/7]-4xI[Z/8]-8xI[Z/9]+8xI[Z/11] (Mod 12).
If `Z' is `Root' of any Time Code (TC) and `Ego' is `Day Stem' at birth, Los: Ego=9-4Z+I[Z/2]+3xI[Z/3]+8xI[Z/4]+2xI[Z/5]-I[Z/6]+6xI[Z/7]-2xI[Z/8]+8xI[Z/11] (Mod 12).
Hui=6+Z (Mod 12).
Huk=6-Z (Mod 12).
Chi=Z-8 (Mod 12).
Kok=10-Z (Mod 12).
Que/Kar=6+Z (Mod 12).
Lun=3-Z (Mod 12).
Hei=9-Z (Mod 12).
Hoo=1+Z (Mod 12).
Psu=5+8Z (Mod 12).
Goo=2+3xI[(Z+1)/3] (Mod 12).
Gwa=10+3xI[(Z+1)/3] (Mod 12).
Fei=8+Z-6xI[Z/3] (Mod 12).
Yei=11+Z (Mod 12).
Kwy=2-3xR[Z/4] (Mod 12).
Lfo=8-3xR[Z/4] (Mod 12).
Cak=6-7Z+9xI[Z/4]-9xI[Z/5]+3xI[Z/8]-3xI[Z/10] (Mod 12).
Tdo=5+3xR[Z/4] (Mod 12).
Pik=7+4Z-I[Z/2]+2xI[Z/3]-4xI[Z/4]-I[Z/6]-2xI[Z/7]+2xI[Z/8]+10xI[Z/9]+I[Z/10]+2xI[Z/11] (Mod 12).
Sui=3+6Z+9xI[Z/2]-6xI[Z/4] (Mod 12).
Yng=3-5Z+9xI[Z/4]-3xI[Z/5]+3xI[Z/6]-3xI[Z/8]+6xI[Z/10]+9xI[Z/11] (Mod 12).
Hoi=7-Z (Mod 12).
Por=(3+Z)&C{R[Z/2]=0:9+Z} (Mod 12).
Aat=12-Z (Mod 12).
Nik=1+3xI[{Z+1 (Mod 12)}/3] (Mod 12).
Hom=10-4Z-2xI[Z/2]+2xI[Z/4]+3xI[Z/5]+4xI[Z/6]+6xI[Z/9]+5xI[Z/10]+9xI[Z/11] (Mod 12).
Yuk=5+9xR[Z/4] (Mod 12).
Gak=3xI[(Z+4)/3] (Mod 12)。
Ysi=&C[Z=0, 4:1]&C[Z=1:2]&C[Z=5:9]&C[Z=6, 11:4]&C[Z=8, 9:10] (Mod 12).
Kam=9xR[Z/4] (Mod 12).
Can=9+R[Z/6] (Mod 12).
Bau=3+R[Z/6] (Mod 12).
Chm=9xR[Z/4] (Mod 12).
Pan=1+9xR[Z/4] (Mod 12).
Yik=2+9xR[Z/4] (Mod 12).
Sik=3+9xR[Z/4] (Mod 12).
Wah=4+9xR[Z/4] (Mod 12).
Cip=5+9xR[Z/4] (Mod 12).
Joi=6+9xR[Z/4] (Mod 12).
Tst=7+9xR[Z/4] (Mod 12).
Zhi=8+9xR[Z/4] (Mod 12).
Ham=9+9xR[Z/4] (Mod 12).
Yut=10+9xR[Z/4] (Mod 12).
Mon=11+9xR[Z/4] (Mod 12).
Kim=Z.
Zee=Z.
Fym=1+Z (Mod 12).
Sog=2+Z (Mod 12).
Sok=3+Z (Mod 12).
Kun=4+Z (Mod 12).
Sfu=5+Z (Mod 12).
Buy=6+Z (Mod 12).
Ark=7+Z (Mod 12).
Foo=8+Z (Mod 12).
Sit=9+Z (Mod 12).
Diu=10+Z (Mod 12).
Bag=11+Z (Mod 12).
Fu=2+Z (Mod 12).
Bu=12-Z (Mod 12).
Yin=7+Z (Mod 12).
Yiu=11+Z (Mod 12).
Tma=2+9xR[Z/4] (Mod 12).
Kai=6+2xI[Z/2] (Mod 12).
Tmo=2+9Z-3xI[Z/2]-6xI[Z/3]-6xI[Z/6]+6xI[Z/7]+6xI[Z/9]+6xI[Z/11] (Mod 12).
Tyu=10-8Z+4xI[Z/2]-9xI[Z/3]+3xI[Z/4]+6xI[Z/5]+6xI[Z/6]-8xI[Z/7]+9xI[Z/8]+I[Z/9]-7xI[Z/10] (Mod 12).
Yst=6-2Z (Mod 12).
Tng=2Z+8 (Mod 12).
Yoo=2Z+8 (Mod 12).
Yee=3+Z (Mod 12).
Ylm=6+Z (Mod 12).
Ysa=8+Z-6xI[Z/3] (Mod 12).
Yaa=5+2Z-9xI[Z/3]-3xI[Z/4]+9xI[Z/6]+3xI[Z/8]+9xI[Z/9] (Mod 12).
Cso=(2-Z)&C[5<Z<11:Z+4] (Mod 12).
Yjm=11-Z (Mod 12).
Hut=6-6Z+7xI[Z/2]+6xI[Z/4]+6xI[Z/6]+6xI[Z/10] (Mod 12).
Ch=10-Z (Mod 12).
Kk=4+Z (Mod 12).
Hun=11-Z (Mod 12).
Kip=11+Z (Mod 12).
Tfu=6+Z (Mod 12).
Fgo=2+Z (Mod 12).
Chn=10-2xI[{U+5x[U-Z-1 (Mod 12)]-1}/10] (Mod 12) or Chn=10-2xI[(N-1)/10] (Mod 12) and N=5x{11-[(Z-U) (Mod 12)]}+U. `N' is the `Sequence Code of Time Co-ordinates' (Numerology).
Chn2=11-2xI[{U+5[U-Z-1 (Mod 12)]-1}/10] (Mod 12) or Chn2=Chn+1 (Mod 12).
Im=2+R[Z/4]-3xI[Z/2]+7xI[Z/3]-I[Z/4]-7xI[Z/6]+7xI[Z/7]-7xI[Z/9]+7xI[Z/11]+A[h/2] (Mod 12). `Z' is the root of year after `Joint of Year'. `Joint of Year' is same as `Joint of February' in Gregorian calendar. If the time is before `Joint of Year', it is regarded as previous year. `h' is the time reckoning on a 24-hour base. The unit is hour.
Li=10+R[Z/4]+3xI[Z/2]-6xI[Z/3]-I[Z/5]-5xI[Z/6]+6xI[Z/7]+5xI[Z/9]+2xI[Z/10]+6xI[Z/11]+A[h/2] (Mod 12). `Z' is the root of year after `Joint of Year'. `Joint of Year' is same as `Joint of February' in Gregorian calendar. If the time is before `Joint of Year', it is regarded as previous year. `h' is the time reckoning on a 24-hour base. The unit is hour.
Dco=10+3xI[U/3]-9xI[U/5]-3xI[U/6]+3xI[U/7]+9xI[U/10] (Mod 12).
Dlu=1+U+I[U/3]-I[U/5]-2xI[U/6]+I[U/7]+I[U/10] (Mod 12).
Dyo=2+U+I[U/3]-I[U/5]-2xI[U/6]+I[U/7]+I[U/10] (Mod 12).
Dto=U+I[U/3]-I[U/5]-2xI[U/6]+I[U/7]+I[U/10] (Mod 12).
Dfi=6+U+I[U/4]+I[U/5]-2xI[U/6]-I[U/8] (Mod 12).
Deu=2-U-I[U/4]-I[U/5]+2xI[U/6]+I[U/8] (Mod 12).
Dck=4+U+I[U/3]-2xI[U/5]-I[U/6]+I[U/7]+2xI[U/10] (Mod 12).
Dkk=10-U-I[U/3]+2xI[U/5]+I[U/6]-I[U/7]-2xI[U/10] (Mod 12).
Dkw=(1-U)&C[U<4:3-U] (Mod 12).
Dkg={1-U-5xI[U/2]+4xI[U/3]+3xI[U/7]+7xI[U/8]-I[U/9]}&C[U=5:4,10]&C[U=6:1,7] (Mod 12).
Dje={5+3xR[(U-1)/2]}&C{U>6:11-9xR[(U-1)/2]} (Mod 12).
Duh=1-U+5xI[U/3]+5xI[U/5]-5xI[U/6]+2xI[U/7]-5xI[U/10] (Mod 12).
Dkn=6+U-4xI[U/2]+9xI[U/6]+I[U/7]+I[U/8]-I[U/10] (Mod 12).
Dfk=10-U+5xI[U/3]-7xI[U/5]-5xI[U/6]+5xI[U/7]-3xI[U/9]+7xI[U/10] (Mod 12).
Dyn=5-3xR[U/5]+I[{R[U/5]}/4] (Mod 12).
Dhk=11-5xI[U/2]-4xI[U/3]+5xI[U/5]+4xI[U/6]-4xI[U/7]+7xI[U/10] (Mod 12).
Dcu=4+U+5xI[U/3]+4xI[U/4]+8xI[U/6]-7xI[U/7]-I[U/8]-3xI[U/9]+I[U/10] (Mod 12).
Dha=2+7U-6xI[U/2]-10xI[U/3]+2xI[U/5]-2xI[U/6]+3xI[U/7]-2xI[U/8]-I[U/9] (Mod 12).
Dyu=3+U+I[U/3]-2xI[U/5]-I[U/6]+I[U/7]+2xI[U/10] (Mod 12).
Dym=4+2U-8xI[U/3]+3xI[U/4]-5xI[U/5]+6xI[U/6]+4xI[U/7]-6xI[U/8]-3xI[U/9]-I[U/10] (Mod 12).
Djt=10-2U-I[U/6] (Mod 12).
Dch=10-Z (Mod 12).
Dko=4+Z (Mod 12).
Dhn=11-Z (Mod 12).
Dkp=11+Z (Mod 12).
Dtf=6+Z (Mod 12).
Dfg=2+Z (Mod 12).
Dqe/Dka=6+Z (Mod 12).
Dln=3-Z (Mod 12).
Dhe=9-Z (Mod 12).
Dhm=9+9xR[Z/4] (Mod 12).
Dil=11+Z (Mod 12).
Dmo=2+9Z-3xI[Z/2]-6xI[Z/3]-6xI[Z/6]+6xI[Z/7]+6xI[Z/9]+6xI[Z/11] (Mod 12).
Dty=10-8Z+4xI[Z/2]-9xI[Z/3]+3xI[Z/4]+6xI[Z/5]+6xI[Z/6]-8xI[Z/7]+9xI[Z/8]+I[Z/9]-7xI[Z/10] (Mod 12).
Dys=6-2Z (Mod 12).
Dkm=9xR[Z/4] (Mod 12).
Dhu=6+Z (Mod 12).
Dku=6-Z (Mod 12).
Dci=Z-8 (Mod 12).
Dok=10-Z (Mod 12).
Dcp=5+9xR[Z/4] (Mod 12).
Djy=6+9xR[Z/4] (Mod 12).
Dtn=7+9xR[Z/4] (Mod 12).
Dsa=5+8Z (Mod 12).
Dsu=5+8Z (Mod 12).
Dyg=3-5Z+9xI[Z/4]-3xI[Z/5]+3xI[Z/6]-3xI[Z/8]+6xI[Z/10]+9xI[Z/11] (Mod 12).
Dhi=7-Z (Mod 12).
Dpr=(3+Z)&C{R[Z/2]=0:9+Z} (Mod 12).
Dho=1+Z (Mod 12).
Dft=2Z+8 (Mod 12).
Daa=5+2Z-9xI[Z/3]-3xI[Z/4]+9xI[Z/6]+3xI[Z/8]+9xI[Z/9] (Mod 12).
Dcs=(2-Z)&C[5<Z<11:Z+4] (Mod 12).
Dyj=11-Z (Mod 12).
Dht=6-6Z+7xI[Z/2]+6xI[Z/4]+6xI[Z/6]+6xI[Z/10] (Mod 12).
Djm=9xR[Z/4] (Mod 12).
Dpn=1+9xR[Z/4] (Mod 12).
Dyk=2+9xR[Z/4] (Mod 12).
Dwa=4+9xR[Z/4] (Mod 12).
Dzi=8+9xR[Z/4] (Mod 12).
Dyt=10+9xR[Z/4] (Mod 12).
Dgo=2+3xI[(Z+1)/3] (Mod 12).
Dga=10+3xI[(Z+1)/3] (Mod 12).
Djf=3xR[Z/3]+2xI[{R[Z/3]}/2] (Mod 12).
Dfe=8+Z-6xI[Z/3] (Mod 12).
Dye=3+Z (Mod 12).
Dyi=11+Z (Mod 12).
Dgw=2-3xR[Z/4] (Mod 12).
Dim=Z.
Dss=Z.
Dbw=3+R[Z/6] (Mod 12).
Dan=9+R[Z/6] (Mod 12).
Dsi=3+6Z+9xI[Z/2]-6xI[Z/4] (Mod 12).
Dik=1+3xI[{Z+1 (Mod 12)}/3] (Mod 12).
Duk=5+9xR[Z/4] (Mod 12).
Dak=6-7Z+9xI[Z/4]-9xI[Z/5]+3xI[Z/8]-3xI[Z/10] (Mod 12).
Ddo=5+3xR[Z/4] (Mod 12).
Dtg=2Z+8 (Mod 12).
Dpk=7+4Z-I[Z/2]+2xI[Z/3]-4xI[Z/4]-I[Z/6]-2xI[Z/7]+2xI[Z/8]+10xI[Z/9]+I[Z/10]+2xI[Z/11] (Mod 12).
Dli=8-3xR[Z/4] (Mod 12).
Dfo=1+Z (Mod 12).
Dat=12-Z (Mod 12).
Dhg=10-4Z-2xI[Z/2]+2xI[Z/4]+3xI[Z/5]+4xI[Z/6]+6xI[Z/9]+5xI[Z/10]+9xI[Z/11] (Mod 12).
Dfu=4+Z (Mod 12).
Dsy=5+Z (Mod 12).
Dbi=6+Z (Mod 12).
Drk=7+Z (Mod 12).
Dff=8+Z (Mod 12).
Dju=9+Z (Mod 12).
Dit=9+Z (Mod 12).
Ddu=10+Z (Mod 12).
Dbg=11+Z (Mod 12).
Dso=3+Z (Mod 12).
Dse=3+9xR[Z/4] (Mod 12).
Dsg=2+Z (Mod 12).
Dmg=11+9xR[Z/4] (Mod 12).
Dup=1-Z (Mod 12).
Dgk=3xI[(Z+4)/3] (Mod 12).
Dsh=&C[Z=0, 4:1]&C[Z=1:2]&C[Z=5:9]&C[Z=6, 11:4]&C[Z=8, 9:10] (Mod 12).
Sam=1+m+d+I[h/23] (Mod 12). `m' is the month after `Joint of Month' in Gregorian calendar. If the time is before `Joint of Month', it is regarded as previous month. `d' is the day of a month in lunar calendar. `h' is the time reckoning on a 24-hour base. The unit is hour. If the time is after 11:00 p.m., the day is regarded as next day and the time is regarded as 0:00 a.m..
Bat=1-m-d-I[h/23] (Mod 12). `m' is the month after `Joint of Month' in Gregorian calendar. If the time is before `Joint of Month', it is regarded as previous month. `d' is the day of a month in lunar calendar. `h' is the time reckoning on a 24-hour base. The unit is hour. If the time is after 11:00 p.m., the day is regarded as next day and the time is regarded as 0:00 a.m..
Yan=8+d-A[h/2]+I[h/23] (Mod 12). `d' is the day of a month in lunar calendar. `h' is the time reckoning on a 24-hour base. The unit is hour. If the time is after 11:00 p.m., the day is regarded as next day and the time is regarded as 0:00 a.m..
Kwi=2+d+A[h/2]+I[h/23] (Mod 12). `d' is the day of a month in lunar calendar. `h' is the time reckoning on a 24-hour base. The unit is hour. If the time is after 11:00 p.m., the day is regarded as next day and the time is regarded as 0:00 a.m..
See=5+m-A[h/2] (Mod 12). `m' is the month after `Joint of Month' in Gregorian calendar. If the time is before `Joint of Month', it is regarded as previous month. `h' is the time reckoning on a 24-hour base. The unit is hour.
Seu=7+m-A[h/2] (Mod 12). `m' is the month after `Joint of Month' in Gregorian calendar. If the time is before `Joint of Month', it is regarded as previous month. `h' is the time reckoning on a 24-hour base. The unit is hour.
Coi=m-A[h/2]+Z (Mod 12). `Z' is the root of year after `Joint of Year'. `Joint of Year' is same as `Joint of February' in Gregorian calendar. If the time is before `Joint of Year', it is regarded as previous year. `m' is the month after `Joint of Month' in Gregorian calendar. If the time is before `Joint of Month', it is regarded as previous month. `h' is the time reckoning on a 24-hour base. The unit is hour.
Sau=m+A[h/2]+Z (Mod 12). `Z' is the root of year after `Joint of Year'. `Joint of Year' is same as `Joint of February' in Gregorian calendar. If the time is before `Joint of Year', it is regarded as previous year. `m' is the month after `Joint of Month' in Gregorian calendar. If the time is before `Joint of Month', it is regarded as previous month. `h' is the time reckoning on a 24-hour base. The unit is hour.
`U' is the alphabetical order of the stem of time interval and `Z' is the root of time interval. In case of year, `U' and `Z' stands for the stem and root of it, only if the time is after `Joint of Year'. If the time is before `Joint of Year', it is regarded as previous year. `Joint of Year' is same as `Joint of February' in Gregorian calendar. Usually, it is on a day between 3rd to 5th of February in Gregorian calendar. In case of month, `U' and `Z' stands for the stem and root of it, only if the time is after `Joint of Month'. If the time is before `Joint of Month', it is regarded as previous month. `y' is the year after `Joint of Year' in Gregorian calendar. If the time is before `Joint of Year', it is regarded as previous year. `m' is the month after `Joint of Month' in Gregorian calendar. If the time is before `Joint of Month', it is regarded as previous month. `d' is the day of a month in lunar calendar. `h' is the real time reckoning on a 24-hour base. The unit is hour. If the time is after 11:00 p.m., the day is regarded as next day and the time is regarded as 0:00 a.m.. `Ego' is the `Stem' of date at birth. `SC' is the `Sex Code' of a person. The `Sex Code' of male is `M' and m=0. The `Sex code' of female is `F' and f=1. In general, the value of `m' is assigned to be `0' and the value of `f' is `1'. The `Sex Code' of transsexual is the original sex at birth. The `Sex Code' of hermaphrodite (H), people have neutral sex (N) or genderless (N) could be either `M' or `F'. In this case, both sex codes should be used to check out which one is more accurate. `R[m/n]' is a remainder function such that it takes the remainder of `m' divided by `n'. `n' is a natural number. Natural numbers are 1,2,3,4,5,……. Zero is not a natural number. `I[n]' is an integer function such that it takes the integral part of number `n' without rounding up it. `A[n]' is an approximated integer function such that it takes the nearest whole number of `n'. `&C[ ]' is a conditional function of an event such that the mathematical expression after the `:' sign must be operated if the event occurs (i.e. The conditional `&C[ ]' becomes true.). `T=(Mod 12)' is a modulated function such that if T>11 then `T' becomes `T-12'. If T<0 then `T' becomes `T+12'. Hence, the value of `T' always lies from 0 to 11. |
Assumption & Example | Assume the time is 12:32 p.m. on 19th February of 2005. It is the nineteenth day in the eleventh month in lunar calendar. The `Year Code' (YC) is (2,9). The `Month Code' (MC) is (5,0). The `Day Code' (DC) is (4,1). The `Hour Code' (HC) is (3,6). Find the location (zone number) of timeons of a male at that time. The `Sex Code' (SC) of male is `m' and `m=0'. SC=0. Since 12:32 p.m. on 19th February of 2005 is after `Joint of Year', y=2005. It is also after `Joint of December' which is at 8:34 a.m. on 7th December of 2005. Thus, m=12. The lunar day is d=19. h=12+32/60 and h=12.533 . The stem of hour is U=3. The root of hour is Z=6. |
Formula: Jwo, Jwo2, Jwo3, Jwo4 & Jwo5 |
Examples of determining whether there is a great disaster on earth in a certain year are as follows.
Example I: If y=209B.C., apply `Year Stem' Formula (U) for `y' B.C. to find the stem of year. Note that the beginning of next year is at the `Joint of February' which means `Spring Start'. Usually, the date is between 3rd to 5th of February in every year.
Substitute y=209 in the formula, U=8-y (Mod 10). U=8-209 (Mod 10). U= -201 (Mod 10). U=21x10-201. U=9. Stem=U=I=9.
Next, apply `Year Root' Formula (Z) for `y' B.C. to find the root of year. Substitute y=209 in the formula, Z=9-y (Mod 12). Z=9-209 (Mod 12). Z= -200 (Mod 12). Z=17x12-200. Z=4. Root=Z=4. The `Year Code' of 209B.C. is `I4'.
When y=209B.C., subsitute U=9 and y=209 in the formula for year in B.C., Jwo={Jwo=6+3xI[U/2]-5xI[U/3]-2xI[U/4]-I[U/5]+3xI[U/6]-5xI[U/7]+2xI[U/8]-I[U/10] (Mod 12) & Z=9-y (Mod 12)}&C[Jwo<>Z:Jwo=i].
Jwo={Jwo=6+3xI[9/2]-5xI[9/3]-2xI[9/4]-I[9/5]+3xI[9/6]-5xI[9/7]+2xI[9/8]-I[9/10] (Mod 12) & Z=9-209 (Mod 12)}&C[Jwo<>Z:Jwo=i].
Jwo={Jwo=6+3xI[4.5]-5xI[3]-2xI[2.25]-I[1.8]+3xI[1.5]-5xI[1.285]+2xI[1.125]-I[0.9] (Mod 12) & Z= -200 (Mod 12)}&C[Jwo<>Z:Jwo=i].
Jwo={Jwo=6+3x4-5x3-2x2-1+3x1-5x1+2x1-0 (Mod 12) & Z=17x12-200}&C[Jwo<>Z:Jwo=i].
Jwo={Jwo= -2 (Mod 12) & Z=4}&C[Jwo<>Z:Jwo=i].
Jwo={Jwo=12-2 & Z=4}&C[Jwo<>Z:Jwo=i].
Jwo={Jwo=10 & Z=4}&C[Jwo<>Z:Jwo=i].
Jwo=i. Since the value of `Jwo' is imaginary, the result means that this formula cannot determine whether 209B.C. is a year of great disaster or not. The other formulae, Jwo2, Jwo3,Jwo4 & Jwo5, should be used to find out the result.
When y=209B.C., subsitute U=9 and y=209 in the formula for year in B.C., Jwo2={Jwo2=8+3xI[U/2]-5xI[U/3]-2xI[U/4]-I[U/5]+3xI[U/6]-5xI[U/7]+2xI[U/8]-I[U/10] (Mod 12) & Z=9-y (Mod 12)}&C[Jwo2<>Z:Jwo2=i].
Jwo2={Jwo2=8+3xI[9/2]-5xI[9/3]-2xI[9/4]-I[9/5]+3xI[9/6]-5xI[9/7]+2xI[9/8]-I[9/10] (Mod 12) & Z=9-209 (Mod 12)}&C[Jwo2<>Z:Jwo2=i].
Jwo2={Jwo2=8+3xI[4.5]-5xI[3]-2xI[2.25]-I[1.8]+3xI[1.5]-5xI[1.285]+2xI[1.125]-I[0.9] (Mod 12) & Z=9-209 (Mod 12)}&C[Jwo2<>Z:Jwo2=i].
Jwo2={Jwo2=8+3x4-5x3-2x2-1+3x1-5x1+2x1-0 (Mod 12) & Z= -200 (Mod 12)}&C[Jwo2<>Z:Jwo2=i].
Jwo2={Jwo2=0 (Mod 12) & Z=17x12-200}&C[Jwo2<>Z:Jwo2=i].
Jwo2={Jwo2=0 & Z=4}&C[Jwo2<>Z:Jwo2=i].
Jwo2=i. Since the value of `Jwo2' is imaginary, the result means that this formula cannot determine whether 209B.C. is a year of great disaster or not. The other formulae, Jwo3,Jwo4 & Jwo5, should be used to find out the result.
When y=209B.C., subsitute U=9 and y=209 in the formula for year in B.C., Jwo3={Jwo3=2+U+I[U/3]-2xI[U/5]-I[U/6]+I[U/7]+2xI[U/10] (Mod 12) & Yeu=3-y (Mod 12)}&C[Jwo3<>Yeu:Jwo3=i].
Jwo3={Jwo3=2+9+I[9/3]-2xI[9/5]-I[9/6]+I[9/7]+2xI[9/10] (Mod 12) & Yeu=3-209 (Mod 12)}&C[Jwo3<>Yeu:Jwo3=i].
Jwo3={Jwo3=11+I[3]-2xI[1.8]-I[1.5]+I[1.285]+2xI[0.9] (Mod 12) & Yeu= -206 (Mod 12)}&C[Jwo3<>Yeu:Jwo3=i].
Jwo3={Jwo3=11+3-2x1-1+1+2x0 (Mod 12) & Yeu=18x12-206}&C[Jwo3<>Yeu:Jwo3=i].
Jwo3={Jwo3=13 (Mod 12) & Yeu=10}&C[Jwo3<>Yeu:Jwo3=i].
Jwo3={Jwo3=13-12 & Yeu=10}&C[Jwo3<>Yeu:Jwo3=i].
Jwo3={Jwo3=11 & Yeu=10}&C[Jwo3<>Yeu:Jwo3=i].
Jwo3=i. Since the value of `Jwo3' is imaginary, the result means that this formula cannot determine whether 209B.C. is a year of great disaster or not. The other formulae, Jwo4 & Jwo5, should be used to find out the result.
When y=209B.C., subsitute U=9 and y=209 in the formula for year in B.C., Jwo4={Jwo4=U+I[U/3]-2xI[U/5]-I[U/6]+I[U/7]+2xI[U/10] (Mod 12) & Tor=3-y (Mod 12)}&C[Jwo4<>Tor:Jwo4=i].
Jwo4={Jwo4=9+I[9/3]-2xI[9/5]-I[9/6]+I[9/7]+2xI[9/10] (Mod 12) & Tor=3-209 (Mod 12)}&C[Jwo4<>Tor:Jwo4=i].
Jwo4={Jwo4=9+I[3]-2xI[1.8]-I[1.5]+I[1.285]+2xI[0.9] (Mod 12) & Tor= -206 (Mod 12)}&C[Jwo4<>Tor:Jwo4=i].
Jwo4={Jwo4=9+3-2x1-1+1+2x0 (Mod 12) & Tor=18x12-206}&C[Jwo4<>Tor:Jwo4=i].
Jwo4={Jwo4=10 (Mod 12) & Tor=10}&C[Jwo4<>Tor:Jwo4=i].
Jwo4={Jwo4=10 & Tor=10}&C[Jwo4<>Tor:Jwo4=i].
Jwo4=Tor=10. This means that 209B.C. is a year of great disaster on earth. In fact, the Battle of Cartagena broke out in 209B.C. in the Second Punic War.
Example II: If y=780B.C., apply `Year Stem' Formula (U) for `y' B.C. to find the stem of year.
Substitute y=780 in the formula, U=8-y (Mod 10). U=8-780 (Mod 10). U= -772 (Mod 10). U=78x10-772. U=8. Stem=U=H=8.
Next, apply `Year Root' Formula (Z) for `y' B.C. to find the root of year. Substitute y=780 in the formula, Z=9-y (Mod 12). Z=9-780 (Mod 12). Z= -771 (Mod 12). Z=65x12-771. Z=9. The `Year Code' of 780B.C. is `H9'.
When y=780B.C., subsitute U=8 and y=780 in the formula for year in B.C., Jwo5={Jwo5=U & Z=9-y (Mod 12)}&C[(Jwo5<>6,8 & Z<>2,4,5,6,8,9,11):Jwo5=i].
Jwo5={Jwo5=8 & Z=9-780 (Mod 12)}&C[(Jwo5<>6,8 & Z<>2,4,5,6,8,9,11):Jwo5=i].
Jwo5={Jwo5=8 & Z= -771 (Mod 12)}&C[(Jwo5<>6,8 & Z<>2,4,5,6,8,9,11):Jwo5=i].
Jwo5={Jwo5=8 & Z=65x12-771}&C[(Jwo5<>6,8 & Z<>2,4,5,6,8,9,11):Jwo5=i].
Jwo5={Jwo5=8 & Z=9}&C[(Jwo5<>6,8 & Z<>2,4,5,6,8,9,11):Jwo5=i].
Jwo5=8 & Z=9. Since `Jwo5=8' and `Z=9' in the conditional of `&C[Jwo5<>6,8 & Z<>2,4,5,6,8,9,11]' are false, neither `Jwo5=8' nor `Z=9' can cause `Jwo5=i'. This means that great natural disasters or war occur on earth are not imaginary in both cases. So, 780B.C. is a year of great natural disasters or war. The magnitude of great natural disasters or war is double the event which is caused by only one case to be not imaginary . In fact, a great earthquake occurred in 780B.C. in China, Shaanxi province.
Example III: If y=A.D.526, apply `Year Stem' Formula (U) for A.D.`y' to find the stem of year.
Substitute y=526 in the formula, U=7+y (Mod 10). U=7+526 (Mod 10). U=533 (Mod 10). U=533-53x10. U=3. U=C=3.
Next, apply `Year Root' Formula (Z) for A.D.`y' to find the root of year. Substitute y=526 in the formula, Z=8+y (Mod 12). Z=8+526 (Mod 12). Z=534 (Mod 12). Z=534-44x12. Z=6. The `Year Code' of A.D.526 is `C6'.
When y=A.D.526, subsitute U=3 and y=526 in the formula for year in A.D., Jwo={Jwo=6+3xI[U/2]-5xI[U/3]-2xI[U/4]-I[U/5]+3xI[U/6]-5xI[U/7]+2xI[U/8]-I[U/10] (Mod 12) & Z=8+y (Mod 12)}&C[Jwo<>Z:Jwo=i].
Jwo={Jwo=6+3xI[3/2]-5xI[3/3]-2xI[3/4]-I[3/5]+3xI[3/6]-5xI[3/7]+2xI[3/8]-I[3/10] (Mod 12) & Z=8+526 (Mod 12)}&C[Jwo<>Z:Jwo=i].
Jwo={Jwo=6+3xI[1.5]-5xI[3]-2xI[0.75]-I[0.6]+3xI[0.5]-5xI[0.428]+2xI[0.375]-I[0.3] (Mod 12) & Z=534 (Mod 12)}&C[Jwo<>Z:Jwo=i].
Jwo={Jwo=6+3x1-5x3-2x0-0+3x0-5x0+2x0-0 (Mod 12) & Z=534-44x12)}&C[Jwo<>Z:Jwo=i].
Jwo={Jwo= -6 (Mod 12) & Z=6)}&C[Jwo<>Z:Jwo=i].
Jwo={Jwo=12-6 & Z=6)}&C[Jwo<>Z:Jwo=i].
Jwo={Jwo=6 & Z=6)}&C[Jwo<>Z:Jwo=i].
Jwo=Z=6. This means that A.D.526 is a year of great disaster on earth. In fact, a great earthquake hit Antioch in Syria region of Byzantine Empire in A.D.526 and 250,000 people died.
Example IV: If y=A.D.1453, apply `Year Stem' Formula (U) for `y' A.D. to find the stem of year.
Substitute y=1453 in the formula, U=7+y (Mod 10). U=7+1453 (Mod 10). U=1460 (Mod 10). U=1460-145x10. U=10. U=J=10.
Next, apply `Year Root' Formula (Z) for A.D.`y' to find the root of year. Substitute y=1453 in the formula, Z=8+y (Mod 12). Z=8+1453 (Mod 12). Z=1461 (Mod 12). Z=1461-121x12. Z=9. The `Year Code' of A.D.1453 is `J9'.
When y=A.D.1453, subsitute U=10 and y=1453 in the formula for year in A.D., Jwo5={Jwo5=U & Z=8+y (Mod 12)}&C[(Jwo5<>6,8 & Z<>2,4,5,6,8,9,11):Jwo5=i].
Jwo5={Jwo5=10 & Z=8+1453 (Mod 12)}&C[(Jwo5<>6,8 & Z<>2,4,5,6,8,9,11):Jwo5=i].
Jwo5={Jwo5=10 & Z=1461 (Mod 12)}&C[(Jwo5<>6,8 & Z<>2,4,5,6,8,9,11):Jwo5=i].
Jwo5={Jwo5=10 & Z=1461-121x12}&C[(Jwo5<>6,8 & Z<>2,4,5,6,8,9,11):Jwo5=i].
Jwo5={Jwo5=10 & Z=9}&C[(Jwo5<>6,8 & Z<>2,4,5,6,8,9,11):Jwo5=i].
Jwo5=10 & Z=9. Since `Z=9' in the conditional of `&C[Jwo5<>6,8 & Z<>2,4,5,6,8,9,11]' is false, `Jwo5' is not equalt to `i'. This means that great natural disasters or war occur on earth are not imaginary. A.D.1453 is a year of great natural disasters or war. In fact, Ottoman Empire captured the capital of Byzantine Empire, Constantinople, on 29th May, A.D.1453. Many people were killed.
|
Formula: Inc | Find `Ego' of the person who meets `Inc' at 'Hour Code', HC=D9. Since `D' is the fourth alphabet, U=4. Apply the general formula of `Inc', `Inc: Ego=(U+7)&C{R[U/2]=0:-2} (Mod 10)'. Inc: Ego=(4+7)&C{R[4/2]=0:-2} (Mod 10). Ego=11&C{0=0:-2} (Mod 10). Ego=11-2 (Mod 10). Ego=9 (Mod 10). Ego=9. |
Formula: Win | Find `Ego' of the person who meets `Win' at 'Day Code', DC=G8. Since `G' is the seventh alphabet, U=7. Apply the general formula of `Win', `Win: Ego=U+6 (Mod 10)'. Win: Ego=7+6 (Mod 10). Ego=13 (Mod 10). Ego=13-10. Ego=3. |
Formula: Los | Find `Ego' of the person who meets `Los' at 'Small Fortune Code', SFC=J5. Since `J' is the tenth alphabet, U=10. Apply the general formula of `Los', `Los: Ego=(U-1)&C{R[U/2]=1:+2} (Mod 10)'. Los: Ego=(10-1)&C{R[10/2]=1:+2} (Mod 10). Ego=9&C{0=1:+2} (Mod 10). Ego=9 (Mod 10). Ego=9. |
Formula: Cfu | Find the location (Zone Number) of `Cfu' at 'Big Fortune Code', BFC=I0. Since `I' is the nineth alphabet, U=9. Apply the general formula of `Cfu', `Cfu=10+3xI[U/3]-9xI[U/5]-3xI[U/6]+3xI[U/7]+9xI[U/10] (Mod 12)'. Cfu=10+3xI[9/3]-9xI[9/5]-3xI[9/6]+3xI[9/7]+9xI[9/10] (Mod 12). Cfu=10+3xI[3]-9xI[1.8]-3xI[1.5]+3xI[1.285]+9xI[0.9] (Mod 12). Cfu=10+3x3-9x1-3x1+3x1+9x0 (Mod 12). Cfu=10 (Mod 12). Cfu=10. |
Formula: Luk |
If U=3, apply the formula `Luk=1+U+I[U/3]-2xI[U/5]-I[U/6]+I[U/7]+2xI[U/10] (Mod 12)'. Luk=1+3+I[3/3]-2xI[3/5]-I[3/6]+I[3/7]+2xI[3/10] (Mod 12). Luk=4+I[1]-2xI[0.6]-I[0.5]+I[0.42857]+2xI[0.3] (Mod 12). Luk=4+1-2x0-0+0+2x0 (Mod 12). Luk=5 (Mod 12). Luk=5.
|
Formula: Yeu |
If U=3, apply the formula `Yeu=2+U+I[U/3]-2xI[U/5]-I[U/6]+I[U/7]+2xI[U/10] (Mod 12)'. Yeu=2+3+I[3/3]-2xI[3/5]-I[3/6]+I[3/7]+2xI[3/10] (Mod 12). Yeu=5+I[1]-2xI[0.6]-I[0.5]+I[0.42857]+2xI[0.3] (Mod 12). Yeu=5+1-2x0-0+0+2x0 (Mod 12). Yeu=6 (Mod 12). Yeu=6.
|
Formula: Tor |
If U=3, apply the formula `Tor=U+I[U/3]-2xI[U/5]-I[U/6]+I[U/7]+2xI[U/10] (Mod 12)'. Tor=3+I[3/3]-2xI[3/5]-I[3/6]+I[3/7]+2xI[3/10] (Mod 12). Tor=3+I[1]-2xI[0.6]-I[0.5]+I[0.42857]+2xI[0.3] (Mod 12). Tor=3+1-2x0-0+0+2x0 (Mod 12). Tor=4 (Mod 12). Tor=4.
|
Interchange of `Yeu' & `Tor' Formula: Yeu | `Yeu' & `Tor' are interchangeable in pairs.
If U=3, apply the Yearon Formula `Yeu=2+R[U/2]+3xI[U/3]-3xI[U/6]+3xI[U/7] (Mod 12)'.
Yeu=2+R[3/2]+3xI[3/3]-3xI[3/6]+3xI[3/7] (Mod 12).
Yeu=2+1+3xI[1]-3xI[0.5]+3xI[0.42857] (Mod 12).
Yeu=3+3x1-3x0+3x0 (Mod 12). Yeu=6 (Mod 12).
Yeu=6. [Remarks: `Yeu' and `Tor' must be interchanged in pairs. The values of `Yeu' and `Tor' for odd values of `U' are same as the original pairs.] |
Interchange of `Yeu' & `Tor' Formula: Tor | `Yeu' & `Tor' are interchangeable in pairs.
If U=3, apply the Yearon Formula `Tor=U+2xI[U/2]-I[U/3]-4xI[U/5]+I[U/6]-I[U/7]-8xI[U/10] (Mod 12)'.
Tor=3+2xI[3/2]-I[3/3]-4xI[3/5]+I[3/6]-I[3/7]-8xI[3/10] (Mod 12).
Tor=3+2xI[1.5]-I[1]-4xI[0.6]+I[0.5]-I[0.42857]-8xI[0.3] (Mod 12).
Tor=3+2x1-1-4x0+0-0-8x0 (Mod 12).
Tor=4 (Mod 12).
Tor=4. [Remarks: `Yeu' and `Tor' must be interchanged in pairs. The values of `Yeu' and `Tor' for odd values of `U' are same as the original pairs.] |
Formula: Fui |
If U=3, apply the formula `Fui=6+U+I[U/4]+I[U/5]-2xI[U/6]-I[U/8] (Mod 12)'. Fui=6+3+I[3/4]+I[3/5]-2xI[3/6]-I[3/8] (Mod 12). Fui=9+I[0.75]+I[0.6]-2xI[0.5]-I[0.375] (Mod 12). Fui=9+0+0-2x0-0 (Mod 12). Fui=9 (Mod 12). Fui=9.
|
Formula: Eut |
If U=3, apply the formula `Eut=2-U-I[U/4]-I[U/5]+2xI[U/6]+I[U/8] (Mod 12)'. Eut=2-3-I[3/4]-I[3/5]+2xI[3/6]+I[3/8] (Mod 12). Eut= -1-I[0.75]-I[0.6]+2xI[0.5]+I[0.375] (Mod 12). Eut= -1-0-0+2x0+0 (Mod 12). Eut= -1 (Mod 12). Eut=12-1. Eut=11.
|
Formula: Chw |
If U=3, apply the formula `Chw=4+U+I[U/3]-2xI[U/5]-I[U/6]+I[U/7]+2xI[U/10] (Mod 12)'. Chw=4+3+I[3/3]-2xI[3/5]-I[3/6]+I[3/7]+2xI[3/10] (Mod 12). Chw=7+I[1]-2xI[0.6]-I[0.5]+I[0.42857]+2xI[0.3] (Mod 12). Chw=7+1-2x0-0+0+2x0 (Mod 12). Chw=8 (Mod 12). Chw=8.
|
Formula: Kkw |
If U=3, apply the formula `Kkw=10-U-I[U/3]+2xI[U/5]+I[U/6]-I[U/7]-2xI[U/10] (Mod 12)'. Kkw=10-3-I[3/3]+2xI[3/5]+I[3/6]-I[3/7]-2xI[3/10] (Mod 12). Kkw=7-I[1]+2xI[0.6]+I[0.5]-I[0.42857]-2xI[0.3] (Mod 12). Kkw=7-1+2x0+0-0-2x0 (Mod 12). Kkw=6 (Mod 12). Kkw=6.
|
Formula: Fkw |
If U=3, apply the formula `Fkw=(1-U)&C[U<4:3-U] (Mod 12)'. Fkw=(1-U)&C[U<4:3-U] (Mod 12). Fkw=(1-3)&C[3<4:3-3] (Mod 12). Fkw= -2&C[3<4:0] (Mod 12). Fkw=0 (Mod 12). Fkw=0.
|
Formula: Gkw |
If U=3, apply the formula `Gkw={1-U-5xI[U/2]+4xI[U/3]+3xI[U/7]+7xI[U/8]-I[U/9]}&C[U=5:4,10]&C[U=6:1,7] (Mod 12)'. Gkw={1-3-5xI[3/2]+4xI[3/3]+3xI[3/7]+7xI[3/8]-I[3/9]}&C[3=5:4,10]&C[3=6:1,7] (Mod 12). Gkw= -2-5xI[1.5]+4xI[1]+3xI[0.428]+7xI[0.375]-I[0.333] (Mod 12). Gkw= -2-5x1+4x1+3x0+7x0-0 (Mod 12). Gkw= -3 (Mod 12). Gkw=12-3. Gkw=9.
|
Formula: Jkw |
If U=3, apply the formula `Jkw={5+3xR[(U-1)/2]}&C{U>6:11-9xR[(U-1)/2]} (Mod 12)'. Jkw={5+3xR[(3-1)/2]}&C{3>6:11-9xR[(3-1)/2]} (Mod 12). Jkw={5+3xR[2/2]}&C{3>6:11-9xR[2/2]} (Mod 12). Jkw={5+3x0}&C{3>6:11-9x0} (Mod 12). Jkw=5&C{3>6:11} (Mod 12). Jkw=5 (Mod 12). Jkw=5.
|
Formula: Tyh |
If U=3, apply the formula `Tyh=1-U+5xI[U/3]+5xI[U/5]-5xI[U/6]+2xI[U/7]-5xI[U/10] (Mod 12)'. Tyh=1-3+5xI[3/3]+5xI[3/5]-5xI[3/6]+2xI[3/7]-5xI[3/10] (Mod 12). Tyh= -2+5xI[1]+5xI[0.6]-5xI[0.5]+2xI[0.428]-5xI[0.3] (Mod 12). Tyh= -2+5x1+5x0-5x0+2x0-5x0 (Mod 12). Tyh=3 (Mod 12). Tyh=3.
|
Formula: Gun |
If U=3, apply the formula `Gun=6+U-4xI[U/2]+9xI[U/6]+I[U/7]+I[U/8]-I[U/10] (Mod 12)'. Gun=6+3-4xI[3/2]+9xI[3/6]+I[3/7]+I[3/8]-I[3/10] (Mod 12). Gun=9-4xI[1.5]+9xI[0.5]+I[0.42857]+I[0.375]-I[0.3] (Mod 12). Gun=9-4x1+9x0+0+0-0 (Mod 12). Gun=5 (Mod 12). Gun=5.
|
Formula: Fuk |
If U=3, apply the formula `Fuk=10-U+5xI[U/3]-7xI[U/5]-5xI[U/6]+5xI[U/7]-3xI[U/9]+7xI[U/10] (Mod 12)'. Fuk=10-3+5xI[3/3]-7xI[3/5]-5xI[3/6]+5xI[3/7]-3xI[3/9]+7xI[3/10] (Mod 12). Fuk=7+5xI[1]-7xI[0.6]-5xI[0.5]+5xI[0.42857]-3xI[0.33333]+7xI[0.3] (Mod 12). Fuk=7+5x1-7x0-5x0+5x0-3x0+7x0 (Mod 12). Fuk=12 (Mod 12). Fuk=12-12. Fuk=0.
|
Formula: Tyn |
If U=3, apply the formula `Tyn=5-3xR[U/5]+I[{R[U/5]}/4] (Mod 12)'. Tyn=5-3xR[3/5]+I[{R[3/5]}/4] (Mod 12). Tyn=5-3x3+I[3/4] (Mod 12). Tyn= -4+I[0.75] (Mod 12). Tyn= -4+0 (Mod 12). Tyn= -4 (Mod 12). Tyn=12-4. Tyn=8.
|
Formula: Hok |
If U=3, apply the formula `Hok=11-5xI[U/2]-4xI[U/3]+5xI[U/5]+4xI[U/6]-4xI[U/7]+7xI[U/10] (Mod 12)'. Hok=11-5xI[3/2]-4xI[3/3]+5xI[3/5]+4xI[3/6]-4xI[3/7]+7xI[3/10] (Mod 12). Hok=11-5xI[1.5]-4xI[1]+5xI[0.6]+4xI[0.5]-4xI[0.42857]+7xI[0.3] (Mod 12). Hok=11-5x1-4x1+5x0+4x0-4x0+7x0 (Mod 12). Hok=2 (Mod 12). Hok=2.
|
Formula: Chu |
If U=3, apply the formula `Chu=4+U+5xI[U/3]+4xI[U/4]+8xI[U/6]-7xI[U/7]-I[U/8]-3xI[U/9]+I[U/10] (Mod 12)'. Chu=4+3+5xI[3/3]+4xI[3/4]+8xI[3/6]-7xI[3/7]-I[3/8]-3xI[3/9]+I[3/10] (Mod 12). Chu=7+5xI[1]+4xI[0.75]+8xI[0.5]-7xI[0.42857]-I[0.375]-3xI[0.33333]+I[0.3] (Mod 12). Chu=7+5x1+4x0+8x0-7x0-0-3x0+0 (Mod 12). Chu=12 (Mod 12). Chu=12-12. Chu=0.
|
Formula: Har |
If U=3, apply the formula `Har=2+7U-6xI[U/2]-10xI[U/3]+2xI[U/5]-2xI[U/6]+3xI[U/7]-2xI[U/8]-I[U/9] (Mod 12)'. Har=2+7x3-6xI[3/2]-10xI[3/3]+2xI[3/5]-2xI[3/6]+3xI[3/7]-2xI[3/8]-I[3/9] (Mod 12). Har=23-6xI[1.5]-10xI[1]+2xI[0.6]-2xI[0.5]+3xI[0.42857]-2xI[0.375]-I[0.33333] (Mod 12). Har=23-6x1-10x1+2x0-2x0+3x0-2x0-0 (Mod 12). Har=7 (Mod 12). Har=7.
|
Formula: Yue |
If U=3, apply the formula `Yue=3+U+I[U/3]-2xI[U/5]-I[U/6]+I[U/7]+2xI[U/10] (Mod 12)'. Yue=3+3+I[3/3]-2xI[3/5]-I[3/6]+I[3/7]+2xI[3/10] (Mod 12). Yue=6+I[1]-2xI[0.6]-I[0.5]+I[0.42857]+2xI[0.3] (Mod 12). Yue=6+1-2x0-0+0+2x0 (Mod 12). Yue=7 (Mod 12). Yue=7.
|
Formula: Yim |
If U=3, apply the formula `Yim=4+2U-8xI[U/3]+3xI[U/4]-5xI[U/5]+6xI[U/6]+4xI[U/7]-6xI[U/8]-3xI[U/9]-I[U/10] (Mod 12)'. Yim=4+2x3-8xI[3/3]+3xI[3/4]-5xI[3/5]+6xI[3/6]+4xI[3/7]-6xI[3/8]-3xI[3/9]-I[3/10] (Mod 12). Yim=10-8xI[1]+3xI[0.75]-5xI[0.6]+6xI[0.5]+4xI[0.42857]-6xI[0.375]-3xI[0.33333]-I[0.3] (Mod 12). Yim=10-8x1+3x0-5x0+6x0+4x0-6x0-3x0-0 (Mod 12). Yim=2 (Mod 12). Yim=2.
|
Formula: Jit |
If U=3, apply the formula `Jit=10-2U-I[U/6] (Mod 12). Jit=10-2x3-I[3/6] (Mod 12)'. Jit=4-I[0.5] (Mod 12). Jit=4-0 (Mod 12). Jit=4 (Mod 12). Jit=4.
|
Formula: Bos |
If U=3, apply the formula `Bos=1+U+I[U/3]-I[U/5]-2xI[U/6]+I[U/7]+I[U/10] (Mod 12) or Bos=Luk'. Bos=1+3+I[3/3]-I[3/5]-2xI[3/6]+I[3/7]+I[3/10] (Mod 12). Bos=4+I[1]-I[0.6]-2xI[0.5]+I[0.42857]+I[0.3] (Mod 12). Bos=4+1-0-2x0+0+0 (Mod 12). Bos=5 (Mod 12). Bos=5.
|
Formula: Lis |
If U=3, apply the formula `Lis=&C[(SC:m=0, f=1) & {R[(SC+U)/2]=0:-1, R[(SC+U)/2]=1:+1}]+Bos (Mod 12) or Lis={1+U+I[U/3]-I[U/5]-2xI[U/6]+I[U/7]+I[U/10]}&C[(SC:m=0, f=1) & {R[(SC+U)/2]=0:-1, R[(SC+U)/2]=1:+1}] (Mod 12)'.
Lis={1+U+I[U/3]-I[U/5]-2xI[U/6]+I[U/7]+I[U/10]}&C[(SC:m=0, f=1) & {R[(SC+U)/2]=0:-1, R[(SC+U)/2]=1:+1}] (Mod 12).
Lis={1+3+I[3/3]-I[3/5]-2xI[3/6]+I[3/7]+I[3/10]}&C[R[(0+3)/2]=0:-1, R[(0+3)/2]=1:+1] (Mod 12).
Lis={4+I[1]-I[0.6]-2xI[0.5]+I[0.42857]+I[0.3]}&C[R[3/2]=0:-1, R[3/2]=1:+1] (Mod 12).
Lis={4+1-0-2x0+0+0}&C[1=0:-1, 1=1:+1] (Mod 12).
Lis=5&C[1=0:-1, 1=1:+1] (Mod 12).
Since the truth value of `&C[1=0]' is false and the truth value of `&C[1=1]' is true, Lis=5+1 (Mod 12). Lis=6 (Mod 12). Lis=6.
|
Formula: Clu |
If U=3, apply the formula `Clu=&C[(SC:m=0, f=1) & {R[(SC+U)/2]=0:-2, R[(SC+U)/2]=1:+2}]+Bos (Mod 12) or Clu={1+U+I[U/3]-I[U/5]-2xI[U/6]+I[U/7]+I[U/10]}&C[(SC:m=0, f=1) & {R[(SC+U)/2]=0:-2, R[(SC+U)/2]=1:+2}] (Mod 12)'.
Clu={1+U+I[U/3]-I[U/5]-2xI[U/6]+I[U/7]+I[U/10]}&C[(SC:m=0, f=1) & {R[(SC+U)/2]=0:-2, R[(SC+U)/2]=1:+2}] (Mod 12).
Clu={1+3+I[3/3]-I[3/5]-2xI[3/6]+I[3/7]+I[3/10]}&C[R[(0+3)/2]=0:-2, R[(0+3)/2]=1:+2] (Mod 12).
Clu={4+I[1]-I[0.6]-2xI[0.5]+I[0.42857]+I[0.3]}&C[R[3/2]=0:-2, R[3/2]=1:+2] (Mod 12).
Clu={4+1-0-2x0+0+0}&C[1=0:-1, 1=1:+1] (Mod 12).
Clu=5&C[1=0:-2, 1=1:+2] (Mod 12).
Since the truth value of `&C[1=0]' is false and the truth value of `&C[1=1]' is true, Clu=5+2 (Mod 12). Clu=7 (Mod 12). Clu=7.
|
Formula: Sho |
If U=3, apply the formula `Sho=&C[(SC:m=0, f=1) & {R[(SC+U)/2]=0:-3, R[(SC+U)/2]=1:+3}]+Bos (Mod 12) or Sho={1+U+I[U/3]-I[U/5]-2xI[U/6]+I[U/7]+I[U/10]}&C[(SC:m=0, f=1) & {R[(SC+U)/2]=0:-3, R[(SC+U)/2]=1:+3}] (Mod 12)'.
Sho={1+U+I[U/3]-I[U/5]-2xI[U/6]+I[U/7]+I[U/10]}&C[(SC:m=0, f=1) & {R[(SC+U)/2]=0:-3, R[(SC+U)/2]=1:+3}] (Mod 12).
Sho={1+3+I[3/3]-I[3/5]-2xI[3/6]+I[3/7]+I[3/10]}&C[R[(0+3)/2]=0:-3, R[(0+3)/2]=1:+3] (Mod 12).
Sho={4+I[1]-I[0.6]-2xI[0.5]+I[0.42857]+I[0.3]}&C[R[3/2]=0:-3, R[3/2]=1:+3] (Mod 12).
Sho={4+1-0-2x0+0+0}&C[1=0:-3, 1=1:+3] (Mod 12).
Sho=5&C[1=0:-3, 1=1:+3] (Mod 12).
Since the truth value of `&C[1=0]' is false and the truth value of `&C[1=1]' is true, Sho=5+3 (Mod 12). Sho=8 (Mod 12). Sho=8.
|
Formula: Ckn |
If U=3, apply the formula `Ckn=&C[(SC:m=0, f=1) & {R[(SC+U)/2]=0:-4, R[(SC+U)/2]=1:+4}]+Bos (Mod 12) or Ckn={1+U+I[U/3]-I[U/5]-2xI[U/6]+I[U/7]+I[U/10]}&C[(SC:m=0, f=1) & {R[(SC+U)/2]=0:-4, R[(SC+U)/2]=1:+4}] (Mod 12)'.
Ckn={1+U+I[U/3]-I[U/5]-2xI[U/6]+I[U/7]+I[U/10]}&C[(SC:m=0, f=1) & {R[(SC+U)/2]=0:-4, R[(SC+U)/2]=1:+4}] (Mod 12).
Ckn={1+3+I[3/3]-I[3/5]-2xI[3/6]+I[3/7]+I[3/10]}&C[R[(0+3)/2]=0:-4, R[(0+3)/2]=1:+4] (Mod 12).
Ckn={4+I[1]-I[0.6]-2xI[0.5]+I[0.42857]+I[0.3]}&C[R[3/2]=0:-4, R[3/2]=1:+4] (Mod 12).
Ckn={4+1-0-2x0+0+0}&C[1=0:-4, 1=1:+4] (Mod 12).
Ckn=5&C[1=0:-4, 1=1:+4] (Mod 12).
Since the truth value of `&C[1=0]' is false and the truth value of `&C[1=1]' is true, Ckn=5+4 (Mod 12). Ckn=9 (Mod 12). Ckn=9.
|
Formula: Csu |
If U=3, apply the formula `Csu=&C[(SC:m=0, f=1) & {R[(SC+U)/2]=0:-5, R[(SC+U)/2]=1:+5}]+Bos (Mod 12) or Csu={1+U+I[U/3]-I[U/5]-2xI[U/6]+I[U/7]+I[U/10]}&C[(SC:m=0, f=1) & {R[(SC+U)/2]=0:-5, R[(SC+U)/2]=1:+5}] (Mod 12)'.
Csu={1+U+I[U/3]-I[U/5]-2xI[U/6]+I[U/7]+I[U/10]}&C[(SC:m=0, f=1) & {R[(SC+U)/2]=0:-5, R[(SC+U)/2]=1:+5}] (Mod 12).
Csu={1+3+I[3/3]-I[3/5]-2xI[3/6]+I[3/7]+I[3/10]}&C[R[(0+3)/2]=0:-5, R[(0+3)/2]=1:+5] (Mod 12).
Csu={4+I[1]-I[0.6]-2xI[0.5]+I[0.42857]+I[0.3]}&C[R[3/2]=0:-5, R[3/2]=1:+5] (Mod 12).
Csu={4+1-0-2x0+0+0}&C[1=0:-5, 1=1:+5] (Mod 12).
Csu=5&C[1=0:-5, 1=1:+5] (Mod 12).
Since the truth value of `&C[1=0]' is false and the truth value of `&C[1=1]' is true, Csu=5+5 (Mod 12). Csu=10 (Mod 12). Csu=10.
|
Formula: Lim |
If U=3, apply the formula `Lim=7+U+I[U/3]-I[U/5]-2xI[U/6]+I[U/7]+I[U/10] (Mod 12) or Lim=6+Luk (Mod 12) or Lim=6+Bos (Mod 12)'. Lim=7+3+I[3/3]-I[3/5]-2xI[3/6]+I[3/7]+I[3/10] (Mod 12). Lim=10+I[1]-I[0.6]-2xI[0.5]+I[0.42857]+I[0.3] (Mod 12). Lim=10+1-0-2x0+0+0 (Mod 12). Lim=11 (Mod 12). Lim=11.
|
Formula: Hee |
If U=3, apply the formula `Hee=&C[(SC:m=0, f=1) & {R[(SC+U)/2]=0:-7, R[(SC+U)/2]=1:+7}]+Bos (Mod 12) or Hee={1+U+I[U/3]-I[U/5]-2xI[U/6]+I[U/7]+I[U/10]}&C[(SC:m=0, f=1) & {R[(SC+U)/2]=0:-7, R[(SC+U)/2]=1:+7}] (Mod 12)'.
Hee={1+U+I[U/3]-I[U/5]-2xI[U/6]+I[U/7]+I[U/10]}&C[(SC:m=0, f=1) & {R[(SC+U)/2]=0:-7, R[(SC+U)/2]=1:+7}] (Mod 12).
Hee={1+3+I[3/3]-I[3/5]-2xI[3/6]+I[3/7]+I[3/10]}&C[R[(0+3)/2]=0:-7, R[(0+3)/2]=1:+7] (Mod 12).
Hee={4+I[1]-I[0.6]-2xI[0.5]+I[0.42857]+I[0.3]}&C[R[3/2]=0:-7, R[3/2]=1:+7] (Mod 12).
Hee={4+1-0-2x0+0+0}&C[1=0:-7, 1=1:+7] (Mod 12).
Hee=5&C[1=0:-7, 1=1:+7] (Mod 12).
Since the truth value of `&C[1=0]' is false and the truth value of `&C[1=1]' is true, Hee=5+7 (Mod 12). Hee=12 (Mod 12). Hee=12-12. Hee=0.
|
Formula: Cbm |
If U=3, apply the formula `Cbm=&C[(SC:m=0, f=1) & {R[(SC+U)/2]=0:-8, R[(SC+U)/2]=1:+8}]+Bos (Mod 12) or Cbm={1+U+I[U/3]-I[U/5]-2xI[U/6]+I[U/7]+I[U/10]}&C[(SC:m=0, f=1) & {R[(SC+U)/2]=0:-8, R[(SC+U)/2]=1:+8}] (Mod 12)'.
Cbm={1+U+I[U/3]-I[U/5]-2xI[U/6]+I[U/7]+I[U/10]}&C[(SC:m=0, f=1) & {R[(SC+U)/2]=0:-8, R[(SC+U)/2]=1:+8}] (Mod 12).
Cbm={1+3+I[3/3]-I[3/5]-2xI[3/6]+I[3/7]+I[3/10]}&C[R[(0+3)/2]=0:-8, R[(0+3)/2]=1:+8] (Mod 12).
Cbm={4+I[1]-I[0.6]-2xI[0.5]+I[0.42857]+I[0.3]}&C[R[3/2]=0:-8, R[3/2]=1:+8] (Mod 12).
Cbm={4+1-0-2x0+0+0}&C[1=0:-8, 1=1:+8] (Mod 12).
Cbm=5&C[1=0:-8, 1=1:+8] (Mod 12).
Since the truth value of `&C[1=0]' is false and the truth value of `&C[1=1]' is true, Cbm=5+8 (Mod 12). Cbm=13 (Mod 12). Cbm=13-12. Cbm=1.
|
Formula: Bai |
If U=3, apply the formula `Bai=&C[(SC:m=0, f=1) & {R[(SC+U)/2]=0:-9, R[(SC+U)/2]=1:+9}]+Bos (Mod 12) or Bai={1+U+I[U/3]-I[U/5]-2xI[U/6]+I[U/7]+I[U/10]}&C[(SC:m=0, f=1) & {R[(SC+U)/2]=0:-9, R[(SC+U)/2]=1:+9}] (Mod 12)'.
Bai={1+U+I[U/3]-I[U/5]-2xI[U/6]+I[U/7]+I[U/10]}&C[(SC:m=0, f=1) & {R[(SC+U)/2]=0:-9, R[(SC+U)/2]=1:+9}] (Mod 12).
Bai={1+3+I[3/3]-I[3/5]-2xI[3/6]+I[3/7]+I[3/10]}&C[R[(0+3)/2]=0:-9, R[(0+3)/2]=1:+9] (Mod 12).
Bai={4+I[1]-I[0.6]-2xI[0.5]+I[0.42857]+I[0.3]}&C[R[3/2]=0:-9, R[3/2]=1:+9] (Mod 12).
Bai={4+1-0-2x0+0+0}&C[1=0:-9, 1=1:+9] (Mod 12).
Bai=5&C[1=0:-9, 1=1:+9] (Mod 12).
Since the truth value of `&C[1=0]' is false and the truth value of `&C[1=1]' is true, Bai=5+9 (Mod 12). Bai=14 (Mod 12). Bai=14-12. Bai=2.
|
Formula: Fbg |
If U=3, apply the formula `
Fbg=&C[(SC:m=0, f=1) & {R[(SC+U)/2]=0:-10, R[(SC+U)/2]=1:+10}]+Bos (Mod 12) or Fbg={1+U+I[U/3]-I[U/5]-2xI[U/6]+I[U/7]+I[U/10]}&C[(SC:m=0, f=1) & {R[(SC+U)/2]=0:-10, R[(SC+U)/2]=1:+10}] (Mod 12)'.
Fbg={1+U+I[U/3]-I[U/5]-2xI[U/6]+I[U/7]+I[U/10]}&C[(SC:m=0, f=1) & {R[(SC+U)/2]=0:-10, R[(SC+U)/2]=1:+10}] (Mod 12).
Fbg={1+3+I[3/3]-I[3/5]-2xI[3/6]+I[3/7]+I[3/10]}&C[R[(0+3)/2]=0:-10, R[(0+3)/2]=1:+10] (Mod 12).
Fbg={4+I[1]-I[0.6]-2xI[0.5]+I[0.42857]+I[0.3]}&C[R[3/2]=0:-10, R[3/2]=1:+10] (Mod 12).
Fbg={4+1-0-2x0+0+0}&C[1=0:-10, 1=1:+10] (Mod 12).
Fbg=5&C[1=0:-10, 1=1:+10] (Mod 12).
Since the truth value of `&C[1=0]' is false and the truth value of `&C[1=1]' is true, Fbg=5+10 (Mod 12). Fbg=15 (Mod 12). Fbg=15-12. Fbg=3.
|
Formula: Kfu |
If U=3, apply the formula `Kfu=&C[(SC:m=0, f=1) & {R[(SC+U)/2]=0:-11, R[(SC+U)/2]=1:+11}]+Bos (Mod 12) or Kfu={1+U+I[U/3]-I[U/5]-2xI[U/6]+I[U/7]+I[U/10]}&C[(SC:m=0, f=1) & {R[(SC+U)/2]=0:-11, R[(SC+U)/2]=1:+11}] (Mod 12)'.
Kfu={1+U+I[U/3]-I[U/5]-2xI[U/6]+I[U/7]+I[U/10]}&C[(SC:m=0, f=1) & {R[(SC+U)/2]=0:-11, R[(SC+U)/2]=1:+11}] (Mod 12).
Kfu={1+3+I[3/3]-I[3/5]-2xI[3/6]+I[3/7]+I[3/10]}&C[R[(0+3)/2]=0:-11, R[(0+3)/2]=1:+11] (Mod 12).
Kfu={4+I[1]-I[0.6]-2xI[0.5]+I[0.42857]+I[0.3]}&C[R[3/2]=0:-11, R[3/2]=1:+11] (Mod 12).
Kfu={4+1-0-2x0+0+0}&C[1=0:-11, 1=1:+11] (Mod 12).
Kfu=5&C[1=0:-10, 1=1:+10] (Mod 12).
Since the truth value of `&C[1=0]' is false and the truth value of `&C[1=1]' is true, Kfu=5+11 (Mod 12). Kfu=16 (Mod 12). Kfu=16-12. Kfu=34.
|
Formula: Inc | Find `Ego' of the person who meets `Inc' at 'Hour Code', HC=D9. Since the `Root' of 'Hour Code' is 9, Z=9. Apply the general formula of `Inc', `Inc: Ego=5-4Z+11xI[Z/2]+3xI[Z/3]+I[Z/6]-4xI[Z/7]+2xI[Z/8]-6xI[Z/9]-8xI[Z/10]-4xI[Z/11] (Mod 12)'. Inc: Ego=5-4x9+11xI[9/2]+3xI[9/3]+I[9/6]-4xI[9/7]+2xI[9/8]-6xI[9/9]-8xI[9/10]-4xI[9/11] (Mod 12). Ego= -31+11xI[4.5]+3xI[3]+I[1.5]-4xI[1.285]+2xI[1.125]-6xI[1]-8xI[0.9]-4xI[0.818] (Mod 12). Ego= -31+11x4+3x3+1-4x1+2x1-6x1-8x0-4x0 (Mod 12). Ego=15 (Mod 12). Ego=15-12. Ego=3. |
Formula: Win | Find `Ego' of the person who meets `Win' at 'Day Code', DC=G8. Since the `Root' of 'Day Code' is 8, Z=8. Apply the general formula of `Win', `Win: Ego=6-4Z+9xI[Z/2]+5xI[Z/3]-9xI[Z/6]-4xI[Z/7]-4xI[Z/8]-8xI[Z/9]+8xI[Z/11] (Mod 12)'. Win: Ego=6-4x8+9xI[8/2]+5xI[8/3]-9xI[8/6]-4xI[8/7]-4xI[8/8]-8xI[8/9]+8xI[8/11] (Mod 12). Ego= -26+9xI[4]+5xI[2.666]-9xI[1.333]-4xI[1.142]-4xI[1]-8xI[0.888]+8xI[0.727] (Mod 12). Ego= -26+9x4+5x2-9x1-4x1-4x1-8x0+8x0 (Mod 12). Ego=3 (Mod 12). Ego=3. |
Formula: Los | Find `Ego' of the person who meets `Los' at 'Small Fortune Code', SFC=J5. Since the `Root' of 'Small Fortune Code' is 5, Z=5. Apply the general formula of `Los', `Los: Ego=9-4Z+I[Z/2]+3xI[Z/3]+8xI[Z/4]+2xI[Z/5]-I[Z/6]+6xI[Z/7]-2xI[Z/8]+8xI[Z/11] (Mod 12)'. Los: Ego=9-4x5+I[5/2]+3xI[5/3]+8xI[5/4]+2xI[5/5]-I[5/6]+6xI[5/7]-2xI[5/8]+8xI[5/11] (Mod 12). Ego= -11+I[2.5]+3xI[1.666]+8xI[1.25]+2xI[1]-I[0.833]+6xI[0.714]-2xI[0.625]+8xI[0.454] (Mod 12). Ego= -11+2+3x1+8x1+2x1-0+6x0-2x0+8x0 (Mod 12). Ego=4 (Mod 12). Ego=4. |
Formula: Hui |
If Z=6, apply the formula `Hui=6+Z (Mod 12)'. Hui=6+6 (Mod 12). Hui=12 (Mod 12). Hui=12-12. Hui=0.
|
Formula: Huk |
If Z=6, apply the formula `Huk=6-Z (Mod 12)'. Huk=6-6 (Mod 12). Huk=0 (Mod 12). Huk=0.
|
Formula: Chi |
If Z=6, apply the formula `Chi=Z-8 (Mod 12)'. Chi=6-8 (Mod 12). Chi= -2 (Mod 12). Chi=12-2. Chi=10.
|
Formula: Kok |
If Z=6, apply the formula `Kok=10-Z (Mod 12)'. Kok=10-6 (Mod 12). Kok=4 (Mod 12). Kok=4.
|
Formula: Que/Kar |
If Z=6, apply the formula `Que/Kar=6+Z (Mod 12)'. Que/Kar=6+6 (Mod 12). Que/Kar=12 (Mod 12). Que/Kar=12-12. Que/Kar=0.
|
Formula: Lun |
If Z=6, apply the formula `Lun=3-Z (Mod 12)'. Lun=3-6 (Mod 12). Lun= -3 (Mod 12). Lun=12-3. Lun=9.
|
Formula: Hei |
If Z=6, apply the formula `Hei=9-Z (Mod 12)'. Hei=9-6 (Mod 12). Hei=3 (Mod 12). Hei=3.
|
Formula: Hoo |
If Z=6, apply the formula `Hoo=1+Z (Mod 12)'. Hoo=1+6 (Mod 12). Hoo=7 (Mod 12). Hoo=7.
|
Formula: Psu |
If Z=6, apply the formula `Psu=5+8Z (Mod 12)'. Psu=5+8x6 (Mod 12). Psu=5+48 (Mod 12). Psu=53 (Mod 12). Psu=53-12x4. Psu=5.
|
Formula: Goo |
If Z=6, apply the formula `Goo=2+3xI[(Z+1)/3] (Mod 12)'. Goo=2+3xI[(6+1)/3] (Mod 12). Goo=2+3xI[7/3] (Mod 12). Goo=2+3xI[2.33333] (Mod 12). Goo=2+3x2 (Mod 12). Goo=8 (Mod 12). Goo=8.
|
Formula: Gwa |
If Z=6, apply the formula `Gwa=10+3xI[(Z+1)/3] (Mod 12)'. Gwa=10+3xI[(6+1)/3] (Mod 12). Gwa=10+3xI[7/3] (Mod 12). Gwa=10+3xI[2.33333] (Mod 12). Gwa=10+3x2 (Mod 12). Gwa=16 (Mod 12). Gwa=16-12. Gwa=4.
|
Formula: Fei |
If Z=6, apply the formula `Fei=8+Z-6xI[Z/3] (Mod 12)'. Fei=8+6-6xI[6/3] (Mod 12). Fei=14-6xI[2] (Mod 12). Fei=14-6x2 (Mod 12). Fei=2 (Mod 12). Fei=2.
|
Formula: Yei |
If Z=6, apply the formula `Yei=11+Z (Mod 12)'. Yei=11+6 (Mod 12). Yei=17 (Mod 12). Yei=17-12. Yei=5.
|
Formula: Kwy |
If Z=6, apply the formula `Kwy=2-3xR[Z/4] (Mod 12)'. Kwy=2-3xR[6/4] (Mod 12). Kwy=2-3x2 (Mod 12). Kwy=2-6 (Mod 12). Kwy= -4 (Mod 12). Kwy=12-4. Kwy=8.
|
Formula: Lfo |
If Z=6, apply the formula `Lfo=8-3xR[Z/4] (Mod 12)'. Lfo=8-3xR[6/4] (Mod 12). Lfo=8-3x2 (Mod 12). Lfo=2 (Mod 12). Lfo=2.
|
Formula: Cak |
If Z=6, apply the formula `Cak=6-7Z+9xI[Z/4]-9xI[Z/5]+3xI[Z/8]-3xI[Z/10] (Mod 12)'. Cak=6-7x6+9xI[6/4]-9xI[6/5]+3xI[6/8]-3xI[6/10] (Mod 12). Cak= -36+9xI[1.5]-9xI[1.2]+3xI[0.75]-3xI[0.6] (Mod 12). Cak= -36+9xI[1.5]-9xI[1.2]+3xI[0.75]-3xI[0.6] (Mod 12). Cak= -36+9x1-9x1+3x0-3x0 (Mod 12). Cak= -36 (Mod 12). Cak=12x3-36. Cak=0.
|
Formula: Tdo |
If Z=6, apply the formula `Tdo=5+3xR[Z/4] (Mod 12)'. Tdo=5+3xR[6/4] (Mod 12). Tdo=5+3x2 (Mod 12). Tdo=5+6 (Mod 12). Tdo=11.
|
Formula: Pik |
If Z=6, apply the formula `Pik=7+4Z-I[Z/2]+2xI[Z/3]-4xI[Z/4]-I[Z/6]-2xI[Z/7]+2xI[Z/8]+10xI[Z/9]+I[Z/10]+2xI[Z/11] (Mod 12)'. Pik=7+4x6-I[6/2]+2xI[6/3]-4xI[6/4]-I[6/6]-2xI[6/7]+2xI[6/8]+10xI[6/9]+I[6/10]+2xI[6/11] (Mod 12). Pik=31-I[3]+2xI[2]-4xI[1.5]-I[1]-2xI[0.85714]+2xI[0.75]+10xI[0.66666]+I[0.6]+2xI[0.54545] (Mod 12). Pik=31-3+2x2-4x1-1-2x0+2x0+10x0+0+2x0 (Mod 12). Pik=31-3+2x2-4x1-1-2x0+2x0+10x0+0+2x0 (Mod 12). Pik=27 (Mod 12). Pik=27-12x2. Pik=3.
|
Formula: Sui |
If Z=6, apply the formula `Sui=3+6Z+9xI[Z/2]-6xI[Z/4] (Mod 12)'. Sui=3+6x6+9xI[6/2]-6xI[6/4] (Mod 12). Sui=39+9xI[3]-6xI[1.5] (Mod 12). Sui=39+9x3-6x1 (Mod 12). Sui=60 (Mod 12). Sui=60-12x5. Sui=0.
|
Formula: Yng |
If Z=6, apply the formula `Yng=3-5Z+9xI[Z/4]-3xI[Z/5]+3xI[Z/6]-3xI[Z/8]+6xI[Z/10]+9xI[Z/11] (Mod 12)'. Yng=3-5x6+9xI[6/4]-3xI[6/5]+3xI[6/6]-3xI[6/8]+6xI[6/10]+9xI[6/11] (Mod 12). Yng= -27+9xI[1.5]-3xI[1.2]+3xI[1]-3xI[0.75]+6xI[0.6]+9xI[0.54545] (Mod 12). Yng= -27+9x1-3x1+3x1-3x0+6x0+9x0 (Mod 12). Yng= -18 (Mod 12). Yng=12x2-18. Yng=6.
|
Formula: Hoi |
If Z=6, apply the formula `Hoi=7-Z (Mod 12)'. Hoi=7-Z (Mod 12). Hoi=7-6 (Mod 12). Hoi=1 (Mod 12). Hoi=1.
|
Formula: Por |
If Z=6, apply the formula `Por=(3+Z)&C{R[Z/2]=0:9+Z} (Mod 12)'. Por=(3+6)&C{R[6/2]=0:9+6} (Mod 12). Por=9&C{0=0:15} (Mod 12). Since the truth value of the conditional `&C[0=0]' is true, Por=15 (Mod 12). Por=15-12. Por=3.
|
Formula: Aat |
If Z=6, apply the formula `Aat=12-Z (Mod 12)'. Aat=12-6 (Mod 12). Aat=6 (Mod 12). Aat=6.
|
Formula: Nik |
If Z=6, apply the formula `Nik=1+3xI[{Z+1 (Mod 12)}/3] (Mod 12)'. Nik=1+3xI[{6+1 (Mod 12)}/3] (Mod 12). Nik=1+3xI[{7 (Mod 12)}/3] (Mod 12). Nik=1+3xI[7/3] (Mod 12). Nik=1+3xI[2.33333] (Mod 12). Nik=1+3x2 (Mod 12). Nik=7 (Mod 12). Nik=7.
|
Formula: Hom |
If Z=6, apply the formula `Hom=10-4Z-2xI[Z/2]+2xI[Z/4]+3xI[Z/5]+4xI[Z/6]+6xI[Z/9]+5xI[Z/10]+9xI[Z/11] (Mod 12)'. Hom=10-4Z-2xI[Z/2]+2xI[Z/4]+3xI[Z/5]+4xI[Z/6]+6xI[Z/9]+5xI[Z/10]+9xI[Z/11] (Mod 12). Hom=10-4x6-2xI[6/2]+2xI[6/4]+3xI[6/5]+4xI[6/6]+6xI[6/9]+5xI[6/10]+9xI[6/11] (Mod 12). Hom= -14-2xI[3]+2xI[1.5]+3xI[1.2]+4xI[1]+6xI[0.3333]+5xI[0.6]+9xI[0.5454] (Mod 12). Hom= -14-2x3+2x1+3x1+4x1+6x0+5x0+9x0 (Mod 12). Hom= -11 (Mod 12). Hom=12-11. Hom=1.
|
Formula: Yuk |
If Z=6, apply the formula `Yuk=5+9xR[Z/4] (Mod 12)'. Yuk=5+9xR[6/4] (Mod 12). Yuk=5+9x2 (Mod 12). Yuk=23 (Mod 12). Yuk=23-12. Yuk=11.
|
Formula: Gak |
If Z=6, apply the formula `Gak=3xI[(Z+4)/3] (Mod 12)'. Gak=3xI[(6+4)/3] (Mod 12). Gak=3xI[10/3] (Mod 12). Gak=3xI[3.333] (Mod 12). Gak=3x3 (Mod 12). Gak=9 (Mod 12). Gak=9.
|
Formula: Ysi |
If Z=6, apply the formula `Ysi=&C[Z=0, 4:1]&C[Z=1:2]&C[Z=5:9]&C[Z=6, 11:4]&C[Z=8, 9:10] (Mod 12)'. Ysi=&C[6=0, 4:1]&C[6=1:2]&C[6=5:9]&C[6=6, 11:4]&C[6=8, 9:10] (Mod 12). Ysi=&C[6=6, 11:4] (Mod 12). Ysi=6 (Mod 12). Ysi=6.
|
Formula: Kam |
If Z=6, apply the formula `Kam=9xR[Z/4] (Mod 12)'. Kam=9xR[6/4] (Mod 12). Kam=9x2 (Mod 12). Kam=18 (Mod 12). Kam=18-12. Kam=6.
|
Formula: Can |
If Z=6, apply the formula `Can=9+R[Z/6] (Mod 12)'. Can=9+R[6/6] (Mod 12). Can=9+0 (Mod 12). Can=9 (Mod 12). Can=9.
|
Formula: Bau |
If Z=6, apply the formula `Bau=3+R[Z/6] (Mod 12)'. Bau=3+R[6/6] (Mod 12). Bau=3+0 (Mod 12). Bau=3 (Mod 12). Bau=3.
|
Formula: Chm |
If Z=6, apply the formula `Chm=9xR[Z/4] (Mod 12)'. Chm=9xR[6/4] (Mod 12). Chm=9x2 (Mod 12). Chm=18 (Mod 12). Chm=18-12. Chm=6.
|
Formula: Pan |
If Z=6, apply the formula `Pan=1+9xR[Z/4] (Mod 12)'. Pan=1+9xR[6/4] (Mod 12). Pan=1+9x2 (Mod 12). Pan=19 (Mod 12). Pan=19-12. Pan=7.
|
Formula: Yik |
If Z=6, apply the formula `Yik=2+9xR[Z/4] (Mod 12)'. Yik=2+9xR[6/4] (Mod 12). Yik=2+9x2 (Mod 12). Yik=20 (Mod 12). Yik=20-12. Yik=8.
|
Formula: Sik |
If Z=6, apply the formula `Sik=3+9xR[Z/4] (Mod 12)'. Sik=3+9xR[6/4] (Mod 12). Sik=3+9x2 (Mod 12). Sik=21 (Mod 12). Sik=21-12. Sik=9.
|
Formula: Wah |
If Z=6, apply the formula `Wah=4+9xR[Z/4] (Mod 12)'. Wah=4+9xR[6/4] (Mod 12). Wah=4+9x2 (Mod 12). Wah=22 (Mod 12). Wah=22-12. Wah=10.
|
Formula: Cip |
If Z=6, apply the formula `Cip=5+9xR[Z/4] (Mod 12)'. Cip=5+9xR[6/4] (Mod 12). Cip=5+9x2 (Mod 12). Cip=23 (Mod 12). Cip=23-12. Cip=11.
|
Formula: Joi |
If Z=6, apply the formula `Joi=6+9xR[Z/4] (Mod 12)'. Joi=6+9xR[6/4] (Mod 12). Joi=6+9x2 (Mod 12). Joi=24 (Mod 12). Joi=24-12x2. Joi=0.
|
Formula: Tst |
If Z=6, apply the formula `Tst=7+9xR[Z/4] (Mod 12)'. Tst=7+9xR[6/4] (Mod 12). Tst=7+9x2 (Mod 12). Tst=25 (Mod 12). Tst=25-12x2. Tst=1.
|
Formula: Zhi |
If Z=6, apply the formula `Zhi=8+9xR[Z/4] (Mod 12)'. Zhi=8+9xR[6/4] (Mod 12). Zhi=8+9x2 (Mod 12). Zhi=26 (Mod 12). Zhi=26-12x2. Zhi=2.
|
Formula: Ham |
If Z=6, apply the formula `Ham=9+9xR[Z/4] (Mod 12)'. Ham=9+9xR[6/4] (Mod 12). Ham=9+9x2 (Mod 12). Ham=27 (Mod 12). Ham=27-12x2. Ham=3.
|
Formula: Yut |
If Z=6, apply the formula `Yut=10+9xR[Z/4] (Mod 12)'. Yut=10+9xR[6/4] (Mod 12). Yut=10+9x2 (Mod 12). Yut=28 (Mod 12). Yut=28-12x2. Yut=4.
|
Formula: Mon |
If Z=6, apply the formula `Mon=11+9xR[Z/4] (Mod 12)'. Mon=11+9xR[6/4] (Mod 12). Mon=11+9x2 (Mod 12). Mon=29 (Mod 12). Mon=29-12x2. Mon=5.
|
Formula: Kim |
If Z=6, apply the formula `Kim=Z'. Kim=6.
|
Formula: Zee |
If Z=6, apply the formula `Zee=Z'. Zee=6.
|
Formula: Fym |
If Z=6, apply the formula `Fym=1+Z (Mod 12)'. Fym=1+Z (Mod 12). Fym=1+6 (Mod 12). Fym=7 (Mod 12). Fym=7.
|
Formula: Sog |
If Z=6, apply the formula `Sog=2+Z (Mod 12)'. Sog=2+6 (Mod 12). Sog=8 (Mod 12). Sog=8.
|
Formula: Sok |
If Z=6, apply the formula `Sok=3+Z (Mod 12)'. Sok=3+6 (Mod 12). Sok=9 (Mod 12). Sok=9.
|
Formula: Kun |
If Z=6, apply the formula `Kun=4+Z (Mod 12)'. Kun=4+6 (Mod 12). Kun=10 (Mod 12). Kun=10.
|
Formula: Sfu |
If Z=6, apply the formula `Sfu=5+Z (Mod 12)'. Sfu=5+6 (Mod 12). Sfu=11 (Mod 12). Sfu=11.
|
Formula: Buy |
If Z=6, apply the formula `Buy=6+Z (Mod 12)'. Buy=6+6 (Mod 12). Buy=12 (Mod 12). Buy=12-12. Buy=0.
|
Formula: Ark |
If Z=6, apply the formula `Ark=7+Z (Mod 12)'. Ark=7+6 (Mod 12). Ark=13 (Mod 12). Ark=13-12. Ark=1.
|
Formula: Foo |
If Z=6, apply the formula `Foo=8+Z (Mod 12)'. Foo=8+6 (Mod 12). Foo=14 (Mod 12). Foo=14-12. Foo=2.
|
Formula: Sit |
If Z=6, apply the formula `Sit=9+Z (Mod 12)'. Sit=9+6 (Mod 12). Sit=15 (Mod 12). Sit=15-12. Sit=3.
|
Formula: Diu |
If Z=6, apply the formula `Diu=10+Z (Mod 12)'. Diu=10+6 (Mod 12). Diu=16 (Mod 12). Diu=16-12. Diu=4.
|
Formula: Bag |
If Z=6, apply the formula `Bag=11+Z (Mod 12)'. Bag=11+6 (Mod 12). Bag=17 (Mod 12). Bag=17-12. Bag=5.
|
Formula: Fu |
If Z=6, apply the formula `Fu=2+Z (Mod 12)'. Fu=2+6 (Mod 12). Fu=8 (Mod 12). Fu=8.
|
Formula: Bu |
If Z=6, apply the formula `Bu=12-Z (Mod 12)'. Bu=12-6 (Mod 12). Bu=6 (Mod 12). Bu=6.
|
Formula: Yin |
If Z=6, apply the formula `Yin=7+Z (Mod 12)'. Yin=7+6 (Mod 12). Yin=13 (Mod 12). Yin=13-12. Yin=1.
|
Formula: Yiu |
If Z=6, apply the formula `Yiu=11+Z (Mod 12)'. Yiu=11+6 (Mod 12). Yiu=17 (Mod 12). Yiu=17-12. Yiu=5.
|
Formula: Tma |
If Z=6, apply the formula `Tma=2+9xR[Z/4] (Mod 12)'. Tma=2+9xR[6/4] (Mod 12). Tma=2+9x2 (Mod 12). Tma=20 (Mod 12). Tma=20-12. Tma=8.
|
Formula: Kai |
If Z=6, apply the formula `Kai=6+2xI[Z/2] (Mod 12)'. Kai=6+2xI[6/2] (Mod 12). Kai=6+2xI[3] (Mod 12). Kai=6+2x3 (Mod 12). Kai=12 (Mod 12). Kai=12-12. Kai=0.
|
Formula: Tmo |
If Z=6, apply the formula `Tmo=2+9Z-3xI[Z/2]-6xI[Z/3]-6xI[Z/6]+6xI[Z/7]+6xI[Z/9]+6xI[Z/11] (Mod 12)'. Tmo=2+9x6-3xI[6/2]-6xI[6/3]-6xI[6/6]+6xI[6/7]+6xI[6/9]+6xI[6/11] (Mod 12). Tmo=56-3xI[3]-6xI[2]-6xI[1]+6xI[0.85714]+6xI[0.66666]+6xI[0.54545] (Mod 12). Tmo=56-3x3-6x2-6x1+6x0+6x0+6x0 (Mod 12). Tmo=29 (Mod 12). Tmo=29-12x2. Tmo=5.
|
Formula: Tyu |
If Z=6, apply the formula `Tyu=10-8Z+4xI[Z/2]-9xI[Z/3]+3xI[Z/4]+6xI[Z/5]+6xI[Z/6]-8xI[Z/7]+9xI[Z/8]+I[Z/9]-7xI[Z/10] (Mod 12)'. Tyu=10-8x6+4xI[6/2]-9xI[6/3]+3xI[6/4]+6xI[6/5]+6xI[6/6]-8xI[6/7]+9xI[6/8]+I[6/9]-7xI[6/10] (Mod 12). Tyu= -38+4xI[3]-9xI[2]+3xI[1.5]+6xI[1.2]+6xI[1]-8xI[0.85714]+9xI[0.75]+I[0.66666]-7xI[0.6] (Mod 12). Tyu= -38+4x3-9x2+3x1+6x1+6x1-8x0+9x0+0-7x0 (Mod 12). Tyu= -29 (Mod 12). Tyu=12x3-29. Tyu=7.
|
Formula: Yst |
If Z=6, apply the formula `Yst=6-2Z (Mod 12)'. Yst=6-2x6 (Mod 12). Yst= -6 (Mod 12). Yst=12-6. Yst=6.
|
Formula: Tng |
If Z=6, apply the formula `Tng=2Z+8 (Mod 12)'. Tng=2x6+8 (Mod 12). Tng=20 (Mod 12). Tng=20-12. Tng=8.
|
Formula: Yoo |
If Z=6, apply the formula `Yoo=2Z+8 (Mod 12)'. Yoo=2x6+8 (Mod 12). Yoo=20 (Mod 12). Yoo=20-12. Yoo=8.
|
Formula: Yee |
If Z=6, apply the formula `Yee=3+Z (Mod 12)'. Yee=3+6 (Mod 12). Yee=9.
|
Formula: Ylm |
If Z=6, apply the formula `Ylm=6+Z (Mod 12)'. Ylm=6+6 (Mod 12). Ylm=12 (Mod 12). Ylm=12-12. Ylm=0.
|
Formula: Ysa |
If Z=6, apply the formula `Ysa=8+Z-6xI[Z/3] (Mod 12)'. Ysa=8+6-6xI[6/3] (Mod 12). Ysa=14-6xI[2] (Mod 12). Ysa=14-6x2 (Mod 12). Ysa=2 (Mod 12). Ysa=2.
|
Formula: Yaa |
If Z=6, apply the formula `Yaa=5+2Z-9xI[Z/3]-3xI[Z/4]+9xI[Z/6]+3xI[Z/8]+9xI[Z/9] (Mod 12)'. Yaa=5+2x6-9xI[6/3]-3xI[6/4]+9xI[6/6]+3xI[6/8]+9xI[6/9] (Mod 12). Yaa=17-9xI[2]-3xI[1.5]+9xI[1]+3xI[0.75]+9xI[0.666] (Mod 12). Yaa=17-9x2-3x1+9x1+3x0+9x0 (Mod 12). Yaa=5 (Mod 12). Yaa=5.
|
Formula: Cso |
If Z=6, apply the formula `Cso=(2-Z)&C[5<Z<11:Z+4] (Mod 12)'. Cso=(2-6)&C[5<6<11:6+4] (Mod 12). Cso= -4&C[5<6<11:10] (Mod 12). Cso=10 (Mod 12). Cso=10.
|
Formula: Yjm |
If Z=6, apply the formula `Yjm=11-Z (Mod 12)'. Yjm=11-6 (Mod 12). Yjm=5 (Mod 12). Yjm=5.
|
Formula: Hut |
If Z=6, apply the formula `Hut=6-6Z+7xI[Z/2]+6xI[Z/4]+6xI[Z/6]+6xI[Z/10] (Mod 12)'. Hut=6-6x6+7xI[6/2]+6xI[6/4]+6xI[6/6]+6xI[6/10] (Mod 12). Hut=-30+7xI[3]+6xI[1.5]+6xI[1]+6xI[0.6] (Mod 12). Hut=-30+7x3+6x1+6x1+6x0 (Mod 12). Hut=3 (Mod 12). Hut=3.
|
Formula: Ch |
If Z=6, apply the formula `Ch=10-Z (Mod 12)'. Ch=10-6 (Mod 12). Ch=4 (Mod 12). Ch=4.
|
Formula: Kk |
If Z=6, apply the formula `Kk=4+Z (Mod 12)'. Kk=4+6 (Mod 12). Kk=10 (Mod 12). Kk=10.
|
Formula: Hun |
If Z=6, apply the formula `Hun=11-Z (Mod 12)'. Hun=11-6 (Mod 12). Hun=5 (Mod 12). Hun=5.
|
Formula: Kip |
If Z=6, apply the formula `Kip=11+Z (Mod 12)'. Kip=11+6 (Mod 12). Kip=17 (Mod 12). Kip=17-12. Kip=5.
|
Formula: Tfu |
If Z=6, apply the formula `Tfu=6+Z (Mod 12)'. Tfu=6+6 (Mod 12). Tfu=12 (Mod 12). Tfu=12-12. Tfu=0.
|
Formula: Fgo |
If Z=6, apply the formula `Fgo=2+Z (Mod 12)'. Fgo=2+6 (Mod 12). Fgo=8 (Mod 12). Fgo=8.
|
Formula: Chn |
If U=3 or Z=6, apply the formula `Chn=10-2xI[{U+5x[U-Z-1 (Mod 12)]-1}/10] (Mod 12) or Chn=10-2xI[(N-1)/10] (Mod 12) and N=5x{11-[(Z-U) (Mod 12)]}+U'. `N' is the `Sequence Code of Time Co-ordinates' (Numerology). Chn=10-2xI[{3+5x[3-6-1 (Mod 12)]-1}/10] (Mod 12). Chn=10-2xI[{3+5x[-4 (Mod 12)]-1}/10] (Mod 12). Chn=10-2xI[{3+5x[12-4]-1}/10] (Mod 12). Chn=10-2xI[{3+5x8-1}/10] (Mod 12). Chn=10-2xI[42/10] (Mod 12). Chn=10-2xI[4.2] (Mod 12). Chn=10-2x4 (Mod 12). Chn=2 (Mod 12). Chn=2.
|
Formula: Chn2 |
If U=3 or Z=6, apply the formula `Chn2=11-2xI[{U+5[U-Z-1 (Mod 12)]-1}/10] (Mod 12) or Chn2=Chn+1 (Mod 12)'. Chn2=11-2xI[{3+5x[3-6-1 (Mod 12)]-1}/10] (Mod 12). Chn2=11-2xI[{3+5x[-4 (Mod 12)]-1}/10] (Mod 12). Chn2=11-2xI[{3+5x[12-4]-1}/10] (Mod 12). Chn2=11-2xI[{3+5x8-1}/10] (Mod 12). Chn2=11-2xI[42/10] (Mod 12). Chn2=11-2xI[4.2] (Mod 12). Chn2=11-2x4 (Mod 12). Chn2=3 (Mod 12). Chn2=3. Or, calculate `Chn2' from `Chn'. Since Chn=2 and `Chn2=Chn+1 (Mod 12)', Chn2=2+1 (Mod 12). Chn2=3 (Mod 12). Chn2=3. Hence. Chn=2 and Chn2=3.
|
Formula: Im |
The `Root' (Z) of year at 12:32 p.m. on 19th December of 2005 is Z=9. Apply the formula `Im=2+R[Z/4]-3xI[Z/2]+7xI[Z/3]-I[Z/4]-7xI[Z/6]+7xI[Z/7]-7xI[Z/9]+7xI[Z/11]+A[h/2] (Mod 12)'. `Z' is the root of year after `Joint of Year'. `h' is the time reckoning on a 24-hour base. The unit is hour. Im=2+R[9/4]-3xI[9/2]+7xI[9/3]-I[9/4]-7xI[9/6]+7xI[9/7]-7xI[9/9]+7xI[9/11]+A[12.53333/2] (Mod 12). Im=2+1-3xI[4.5]+7xI[3]-I[2.25]-7xI[1.5]+7xI[1.285714]-7xI[1]+7xI[0.81818]+A[6.26666] (Mod 12). Im=3-3x4+7x3-2-7x1+7x1-7x1+7x0+6 (Mod 12). Im=9 (Mod 12). Im=9.
|
Formula: Li |
The `Root' (Z) of year at 12:32 p.m. on 19th December of 2005 is Z=9. Apply the formula `Li=10+R[Z/4]+3xI[Z/2]-6xI[Z/3]-I[Z/5]-5xI[Z/6]+6xI[Z/7]+5xI[Z/9]+2xI[Z/10]+6xI[Z/11]+A[h/2] (Mod 12)'. `Z' is the root of year after `Joint of Year'. `h' is the time reckoning on a 24-hour base. The unit is hour. Li=10+R[9/4]+3xI[9/2]-6xI[9/3]-I[9/5]-5xI[9/6]+6xI[9/7]+5xI[9/9]+2xI[9/10]+6xI[9/11]+A[12.53333/2] (Mod 12). Li=10+1+3xI[4.5]-6xI[3]-I[1.8]-5xI[1.5]+6xI[1.28571]+5xI[1]+2xI[0.9]+6xI[0.81818]+A[6.26666] (Mod 12). Li=11+3x4-6x3-1-5x1+6x1+5x1+2x0+6x0+6 (Mod 12). Li=16 (Mod 12). Li=16-12. Li=4.
|
Formula: Dco |
If U=9, apply the formula `Dco=10+3xI[U/3]-9xI[U/5]-3xI[U/6]+3xI[U/7]+9xI[U/10] (Mod 12)'. Dco=10+3xI[9/3]-9xI[9/5]-3xI[9/6]+3xI[9/7]+9xI[9/10] (Mod 12). Dco=10+3xI[3]-9xI[1.8]-3xI[1.5]+3xI[1.285]+9xI[0.9] (Mod 12). Dco=10+3x3-9x1-3x1+3x1+9x0 (Mod 12). Dco=10 (Mod 12). Dco=10. |
Formula: Dlu |
If U=9, apply the formula `Dlu=1+U+I[U/3]-I[U/5]-2xI[U/6]+I[U/7]+I[U/10] (Mod 12)'. Dlu=1+9+I[9/3]-I[9/5]-2xI[9/6]+I[9/7]+I[9/10] (Mod 12). Dlu=10+I[3]-I[1.8]-2xI[1.5]+I[1.2857]+I[0.9] (Mod 12). Dlu=10+3-1-2x1+1+0 (Mod 12). Dlu=11 (Mod 12). Dlu=11. |
Formula: Dyo |
If U=9, apply the formula `Dyo=2+U+I[U/3]-I[U/5]-2xI[U/6]+I[U/7]+I[U/10] (Mod 12)'. Dyo=2+9+I[9/3]-I[9/5]-2xI[9/6]+I[9/7]+I[9/10] (Mod 12). Dyo=11+I[3]-I[1.8]-2xI[1.5]+I[1.2857]+I[0.9] (Mod 12). Dyo=11+3-1-2x1+1+0 (Mod 12). Dyo=12 (Mod 12). Dyo=12-12. Dyo=0. |
Formula: Dto |
If U=9, apply the formula `Dto=U+I[U/3]-I[U/5]-2xI[U/6]+I[U/7]+I[U/10] (Mod 12)'. Dto=9+I[9/3]-I[9/5]-2xI[9/6]+I[9/7]+I[9/10] (Mod 12). Dto=9+I[3]-I[1.8]-2xI[1.5]+I[1.2857]+I[0.9] (Mod 12). Dto=9+3-1-2x1+1+0 (Mod 12). Dto=10 (Mod 12). Dto=10. |
Formula: Dfi |
If U=9, apply the formula `Dfi=6+U+I[U/4]+I[U/5]-2xI[U/6]-I[U/8] (Mod 12)'. Dfi=6+9+I[9/4]+I[9/5]-2xI[9/6]-I[9/8] (Mod 12). Dfi=15+I[2.25]+I[1.8]-2xI[1.5]-I[1.125] (Mod 12). Dfi=15+2+1-2x1-1 (Mod 12). Dfi=15 (Mod 12). Dfi=15-12. Dfi=3. |
Formula: Deu |
If U=9, apply the formula `Deu=2-U-I[U/4]-I[U/5]+2xI[U/6]+I[U/8] (Mod 12)'. Deu=2-9-I[9/4]-I[9/5]+2xI[9/6]+I[9/8] (Mod 12). Deu= -7-I[2.25]-I[1.8]+2xI[1.5]+I[1.125] (Mod 12). Deu= -7-2-1+2x1+1 (Mod 12). Deu= -7 (Mod 12). Deu=12-7. Deu=5. |
Formula: Dck |
If U=9, apply the formula `Dck=4+U+I[U/3]-2xI[U/5]-I[U/6]+I[U/7]+2xI[U/10] (Mod 12)'. Dck=4+9+I[9/3]-2xI[9/5]-I[9/6]+I[9/7]+2xI[9/10] (Mod 12). Dck=13+I[3]-2xI[1.8]-I[1.5]+I[1.2857]+2xI[0.9] (Mod 12). Dck=13+3-2x1-1+1+2x0 (Mod 12). Dck=14 (Mod 12). Dck=14-12. Dck=2. |
Formula: Dkk |
If U=9, apply the formula `Dkk=10-U-I[U/3]+2xI[U/5]+I[U/6]-I[U/7]-2xI[U/10] (Mod 12)'. Dkk=10-9-I[9/3]+2xI[9/5]+I[9/6]-I[9/7]-2xI[9/10] (Mod 12). Dkk=1-I[3]+2xI[1.8]+I[1.5]-I[1.2857]-2xI[0.9] (Mod 12). Dkk=1-3+2x1+1-1-2x0 (Mod 12). Dkk=0 (Mod 12). Dkk=0. |
Formula: Dkw |
If U=9, apply the formula `Dkw=(1-U)&C[U<4:3-U] (Mod 12)'. Dkw=(1-9)&C[9<4:3-9] (Mod 12). Dkw= -8&C[9<4:-6] (Mod 12). Dkw= -8 (Mod 12). Dkw=12-8. Dkw=4. |
Formula: Dkg |
If U=9, apply the formula `Dkg={1-U-5xI[U/2]+4xI[U/3]+3xI[U/7]+7xI[U/8]-I[U/9]}&C[U=5:4,10]&C[U=6:1,7] (Mod 12)'. Dkg={1-9-5xI[9/2]+4xI[9/3]+3xI[9/7]+7xI[9/8]-I[9/9]}&C[9=5:4,10]&C[9=6:1,7] (Mod 12). Dkg={-8-5xI[4.5]+4xI[3]+3xI[1.285]+7xI[1.125]-I[1]}&C[9=5:4,10]&C[9=6:1,7] (Mod 12). Dkg={-8-5x4+4x3+3x1+7x1-1}&C[9=5:4,10]&C[9=6:1,7] (Mod 12). Dkg= -7&C[9=5:4,10]&C[9=6:1,7] (Mod 12). Dkg= -7 (Mod 12). Dkg=12-7. Dkg=5. |
Formula: Dje |
If U=9, apply the formula `Dje={5+3xR[(U-1)/2]}&C{U>6:11-9xR[(U-1)/2]} (Mod 12)'. Dje={5+3xR[(9-1)/2]}&C{9>6:11-9xR[(9-1)/2]} (Mod 12). Dje={5+3xR[8/2]}&C{9>6:11-9xR[8/2]} (Mod 12). Dje={5+3x0}&C{9>6:11-9x0} (Mod 12). Dje=5&C{9>6:11} (Mod 12). Dje=11 (Mod 12). Dje=11. |
Formula: Duh |
If U=9, apply the formula `Duh=1-U+5xI[U/3]+5xI[U/5]-5xI[U/6]+2xI[U/7]-5xI[U/10] (Mod 12)'. Duh=1-9+5xI[9/3]+5xI[9/5]-5xI[9/6]+2xI[9/7]-5xI[9/10] (Mod 12). Duh= -8+5xI[3]+5xI[1.8]-5xI[1.5]+2xI[1.285]-5xI[0.9] (Mod 12). Duh= -8+5x3+5x1-5x1+2x1-5x0 (Mod 12). Duh=9 (Mod 12). Duh=9. |
Formula: Dkn |
If U=9, apply the formula `Dkn=6+U-4xI[U/2]+9xI[U/6]+I[U/7]+I[U/8]-I[U/10] (Mod 12)'. Dkn=6+9-4xI[9/2]+9xI[9/6]+I[9/7]+I[9/8]-I[9/10] (Mod 12). Dkn=15-4xI[4.5]+9xI[1.5]+I[1.285]+I[1.125]-I[0.9] (Mod 12). Dkn=15-4x4+9x1+1+1-0 (Mod 12). Dkn=10 (Mod 12). Dkn=10. |
Formula: Dfk |
If U=9, apply the formula `Dfk=10-U+5xI[U/3]-7xI[U/5]-5xI[U/6]+5xI[U/7]-3xI[U/9]+7xI[U/10] (Mod 12)'. Dfk=10-9+5xI[9/3]-7xI[9/5]-5xI[9/6]+5xI[9/7]-3xI[9/9]+7xI[9/10] (Mod 12). Dfk=1+5xI[3]-7xI[1.8]-5xI[1.5]+5xI[1.285]-3xI[1]+7xI[0.9] (Mod 12). Dfk=1+5x3-7x1-5x1+5x1-3x1+7x0 (Mod 12). Dfk=6 (Mod 12). Dfk=6. |
Formula: Dyn |
If U=9, apply the formula `Dyn=5-3xR[U/5]+I[{R[U/5]}/4] (Mod 12)'. Dyn=5-3xR[9/5]+I[{R[9/5]}/4] (Mod 12). Dyn=5-3x4+I[4/4] (Mod 12). Dyn= -7+I[1] (Mod 12). Dyn= -7+1 (Mod 12). Dyn= -6 (Mod 12). Dyn=12-6. Dyn=6. |
Formula: Dhk |
If U=9, apply the formula `Dhk=11-5xI[U/2]-4xI[U/3]+5xI[U/5]+4xI[U/6]-4xI[U/7]+7xI[U/10] (Mod 12)'. Dhk=11-5xI[9/2]-4xI[9/3]+5xI[9/5]+4xI[9/6]-4xI[9/7]+7xI[9/10] (Mod 12). Dhk=11-5xI[4.5]-4xI[3]+5xI[1.8]+4xI[1.5]-4xI[1.2857]+7xI[0.9] (Mod 12). Dhk=11-5x4-4x3+5x1+4x1-4x1+7x0 (Mod 12). Dhk= -16 (Mod 12). Dhk=12x2-16. Dhk=8. |
Formula: Dcu |
If U=9, apply the formula `Dcu=4+U+5xI[U/3]+4xI[U/4]+8xI[U/6]-7xI[U/7]-I[U/8]-3xI[U/9]+I[U/10] (Mod 12)'. Dcu=4+9+5xI[9/3]+4xI[9/4]+8xI[9/6]-7xI[9/7]-I[9/8]-3xI[9/9]+I[9/10] (Mod 12). Dcu=13+5xI[3]+4xI[2.25]+8xI[1.5]-7xI[1.2857]-I[1.125]-3xI[1]+I[0.9] (Mod 12). Dcu=13+5x3+4x2+8x1-7x1-1-3x1+0 (Mod 12). Dcu=33 (Mod 12). Dcu=33-12x2. Dcu=9. |
Formula: Dha |
If U=9, apply the formula `Dha=2+7U-6xI[U/2]-10xI[U/3]+2xI[U/5]-2xI[U/6]+3xI[U/7]-2xI[U/8]-I[U/9] (Mod 12)'. Dha=2+7x9-6xI[9/2]-10xI[9/3]+2xI[9/5]-2xI[9/6]+3xI[9/7]-2xI[9/8]-I[9/9] (Mod 12). Dha=65-6xI[4.5]-10xI[3]+2xI[1.8]-2xI[1.5]+3xI[1.285]-2xI[1.125]-I[1] (Mod 12). Dha=65-6x4-10x3+2x1-2x1+3x1-2x1-1 (Mod 12). Dha=11 (Mod 12). Dha=11. |
Formula: Dyu |
If U=9, apply the formula `Dyu=3+U+I[U/3]-2xI[U/5]-I[U/6]+I[U/7]+2xI[U/10] (Mod 12)'. Dyu=3+9+I[9/3]-2xI[9/5]-I[9/6]+I[9/7]+2xI[9/10] (Mod 12). Dyu=12+I[3]-2xI[1.8]-I[1.5]+I[1.2857]+2xI[0.9] (Mod 12). Dyu=12+3-2x1-1+1+2x0 (Mod 12). Dyu=1 (Mod 12). Dyu=1. |
Formula: Dym |
If U=9, apply the formula `Dym=4+2U-8xI[U/3]+3xI[U/4]-5xI[U/5]+6xI[U/6]+4xI[U/7]-6xI[U/8]-3xI[U/9]-I[U/10] (Mod 12)'. Dym=4+2x9-8xI[9/3]+3xI[9/4]-5xI[9/5]+6xI[9/6]+4xI[9/7]-6xI[9/8]-3xI[9/9]-I[9/10] (Mod 12). Dym=22-8xI[3]+3xI[2.25]-5xI[1.8]+6xI[1.5]+4xI[1.2857]-6xI[1.125]-3xI[1]-I[0.9] (Mod 12). Dym=22-8x3+3x2-5x1+6x1+4x1-6x1-3x1-0 (Mod 12). Dym=0 (Mod 12). Dym=0. |
Formula: Djt |
If U=9, apply the formula `Djt=10-2U-I[U/6] (Mod 12)'. Djt=10-2x9-I[9/6] (Mod 12). Djt= -8-I[1.5] (Mod 12). Djt= -8-1 (Mod 12). Djt= -9 (Mod 12). Djt=12-9. Djt=3. |
Formula: Dln |
If Z=6, apply the formula `Dln=3-Z (Mod 12)'. Dln=3-6 (Mod 12). Dln= -3 (Mod 12). Dln=12-3. Dln=9. |
Formula: Dhe |
If Z=6, apply the formula `Dhe=9-Z (Mod 12)'. Dhe=9-6 (Mod 12). Dhe=3 (Mod 12). Dhe=3. |
Formula: Dhm |
If Z=6, apply the formula `Dhm=9+9xR[Z/4] (Mod 12)'. Dhm=9+9xR[6/4] (Mod 12). Dhm=9+9x2 (Mod 12). Dhm=27 (Mod 12). Dhm=27-12x2. Dhm=3. |
Formula: Dyi |
If Z=6, apply the formula `Dyi=11+Z (Mod 12)'. Dyi=11+6 (Mod 12). Dyi=17 (Mod 12). Dyi=17-12. Dyi=5. |
Formula: Dkm |
If Z=6, apply the formula `Dkm=9xR[Z/4] (Mod 12)'. Dkm=9xR[6/4] (Mod 12). Dkm=9x2 (Mod 12). Dkm=18 (Mod 12). Dkm=18-12. Dkm=6. |
Formula: Dik |
If Z=6, apply the formula `Dik=2+9xR[Z/4] (Mod 12)'. Dik=2+9xR[6/4] (Mod 12). Dik=2+9x2 (Mod 12). Dik=20 (Mod 12). Dik=20-12. Dik=8. |
Formula: Dwa |
If Z=6, apply the formula `Dwa=4+9xR[Z/4] (Mod 12)'. Dwa=4+9xR[6/4] (Mod 12). Dwa=4+9x2 (Mod 12). Dwa=22 (Mod 12). Dwa=22-12. Dwa=10. |
Formula: Dhu |
If Z=6, apply the formula `Dhu=6+Z (Mod 12)'. Dhu=6+6 (Mod 12). Dhu=12 (Mod 12). Dhu=12-12. Dhu=0. |
Formula: Dst |
If Z=6, apply the formula `Dst=6+9xR[Z/4] (Mod 12)'. Dst=6+9xR[6/4] (Mod 12). Dst=6+9x2 (Mod 12). Dst=24 (Mod 12). Dst=24-12x2. Dst=0. |
Formula: Dcp |
If Z=6, apply the formula `Dcp=5+9xR[Z/4] (Mod 12)'. Dcp=5+9xR[6/4] (Mod 12). Dcp=5+9x2 (Mod 12). Dcp=23 (Mod 12). Dcp=23-12. Dcp=11. |
Formula: Dsu |
If Z=6, apply the formula `Dsu=5+8Z (Mod 12)'. Dsu=5+8x6 (Mod 12). Dsu=53 (Mod 12). Dsu=53-12x4. Dsu=5. |
Formula: Dho |
If Z=6, apply the formula `Dho=1+Z (Mod 12). Dho=1+6 (Mod 12). Dho=7 (Mod 12). Dho=7. |
Formula: Dmg |
If Z=6, apply the formula `Dmg=11+9xR[Z/4] (Mod 12)'. Dmg=11+9xR[6/4] (Mod 12). Dmg=11+9x2 (Mod 12). Dmg=29 (Mod 12). Dmg=29-12x2. Dmg=5. |
Formula: Sam |
`m' is the month after `Joint of Month' in Gregorian calendar. If the time is before `Joint of Month', it is regarded as previous month. `d' is the day of a month in lunar calendar. `h' is the time reckoning on a 24-hour base. The unit is hour. If the time is after 11:00 p.m., the day is regarded as next day and the time is regarded as 0:00 a.m.. Assume m=12, d=19 and h=23. Apply the formula `Sam=1+m+d+I[h/23] (Mod 12)'. Sam=1+12+19+I[23/23] (Mod 12). Sam=32+I[1] (Mod 12). Sam=32+1 (Mod 12). Sam=33 (Mod 12). Sam=33-12x2. Sam=9.
|
Formula: Bat |
`m' is the month after `Joint of Month' in Gregorian calendar. If the time is before `Joint of Month', it is regarded as previous month. `d' is the day of a month in lunar calendar. `h' is the time reckoning on a 24-hour base. The unit is hour. If the time is after 11:00 p.m., the day is regarded as next day and the time is regarded as 0:00 a.m.. Assume m=12, d=19 and h=23. Apply the formula `Bat=1-m-d-I[h/23] (Mod 12)'. Bat=1-12-19-I[23/23] (Mod 12). Bat= -30-I[1] (Mod 12). Bat= -30-1 (Mod 12). Bat= -31 (Mod 12). Bat=12x3-31. Bat=5.
|
Formula: Yan |
`d' is the day of a month in lunar calendar. `h' is the time reckoning on a 24-hour base. The unit is hour. If the time is after 11:00 p.m., the day is regarded as next day and the time is regarded as 0:00 a.m.. If d=19 and h=12.53333, apply the formula `Yan=8+d-A[h/2]+I[h/23] (Mod 12)'. Yan=8+19-A[12.53333/2]+I[12.53333/23] (Mod 12). Yan=27-A[6.266665]+I[0.544927] (Mod 12). Yan=27-6+0 (Mod 12). Yan=21 (Mod 12). Yan=21-12. Yan=9.
|
Formula: Kwi |
`d' is the day of a month in lunar calendar. `h' is the time reckoning on a 24-hour base. The unit is hour. If the time is after 11:00 p.m., the day is regarded as next day and the time is regarded as 0:00 a.m.. If d=19 and h=12.53333, apply the formula `Kwi=2+d+A[h/2]+I[h/23] (Mod 12)'. Kwi=2+19+A[12.53333/2]+I[12.53333/23] (Mod 12). Kwi=21+A[6.266665]+I[0.544927] (Mod 12). Kwi=21+6+0 (Mod 12). Kwi=27 (Mod 12). Kwi=27-12x2. Kwi=3.
|
Formula: See |
`m' is the month after `Joint of Month' in Gregorian calendar. If the time is before `Joint of Month', it is regarded as previous month. `h' is the time reckoning on a 24-hour base. The unit is hour.
Apply the formula, `See=5+m-A[h/2] (Mod 12)'. See=5+12-A[12.533/2] (Mod 12). See=17-13 (Mod 12). See=4 (Mod 12). See=4.
|
Formula: Seu |
`m' is the month after `Joint of Month' in Gregorian calendar. If the time is before `Joint of Month', it is regarded as previous month. `h' is the time reckoning on a 24-hour base. The unit is hour. Apply the formula, `Seu=7+m-A[h/2] (Mod 12)'. Seu=7+12-A[12.533/2] (Mod 12). Seu=19-13 (Mod 12). Seu=6 (Mod 12). Seu=6.
|
Formula: Coi |
Assume `Z' is the root of year and `m' is month in Gregorian calendar. If the time is before `Joint of Year', it is regarded as previous year. If the time is before `Joint of Month', it is regarded as previous month. `h' is the time reckoning on a 24-hour base. The unit is hour. The root of year is Z=9 because 12:32 p.m. on 19th February of 2005 is after `Joint of Year'. Since the time is also after `Joint of Month', m=12. Apply the formula, `Coi=m-A[h/2]+Z (Mod 12)'. Coi=12-A[12.533/2]+9 (Mod 12). Coi=12-13+9 (Mod 12). Coi=8 (Mod 12). Coi=8.
|
Formula: Sau |
Assume `Z' is the root of year and `m' is month in Gregorian calendar. If the time is before `Joint of Year', it is regarded as previous year. If the time is before `Joint of Month', it is regarded as previous month. `h' is the time reckoning on a 24-hour base. The unit is hour. The root of year is Z=9 because 12:32 p.m. on 19th February of 2005 is after `Joint of Year'. Since the time is also after `Joint of Month', m=12. Apply the formula, `Sau=m+A[h/2]+Z (Mod 12)'. Sau=12+A[12.533/2]+9 (Mod 12). Sau=12+13+9 (Mod 12). Sau=34 (Mod 12). Sau=34-12x2. Sau=10.
|
|