Zone Number of `Yearon' / Remainder of Year in y B.C.: R=R[y/10] | R=1 | R=2 | R=3 | R=4 | R=5 | R=6 | R=7 | R=8 | R=9 | R=0 |
Jwo={Jwo=3-3xR[y/10]+8xI[{R[y/10]}/2]+2xI[{R[y/10]}/3]-4xI[{R[y/10]}/4]+2xI[{R[y/10]}/5]-2xI[{R[y/10]}/6]+4xI[{R[y/10]}/8] (Mod 12) & Z=9-y (Mod 12)}&C[Jwo<>Z:Jwo=i], whereas `i' is an imaginary number which means `Unknown' or `Indeterminate'. If the value of Jwo, Jwo2, Jwo3, Jwo4 or Jwo5 is not imaginary, it means that great natural disaster or war would occur in the year. | 0 | 5 | 4 | 5 | 4 | 9 | 6 | 11 | 10 | 3 |
Jwo2={Jwo2=5-3xR[y/10]+8xI[{R[y/10]}/2]+2xI[{R[y/10]}/3]-4xI[{R[y/10]}/4]+2xI[{R[y/10]}/5]-2xI[{R[y/10]}/6]-8xI[{R[y/10]}/8] (Mod 12) & Z=9-y (Mod 12)}&C[Jwo2<>Z:Jwo2=i], whereas `i' is an imaginary number which means `Unknown' or `Indeterminate'. If the value of Jwo, Jwo2, Jwo3, Jwo4 or Jwo5 is not imaginary, it means that great natural disaster or war would occur in the year. | 2 | 7 | 6 | 7 | 6 | 11 | 8 | 1 | 0 | 5 |
Jwo3={Jwo3=10-R[y/10]-I[{R[y/10]}/2]+3xI[{R[y/10]}/4]+9xI[{R[y/10]}/8] (Mod 12) & Yeu=3-y (Mod 12)}&C[Jwo3<>Yeu:Jwo3=i], whereas `i' is an imaginary number which means `Unknown' or `Indeterminate'. If the value of Jwo, Jwo2, Jwo3, Jwo4 or Jwo5 is not imaginary, it means that great natural disaster or war would occur in the year. | i | 11 | 10 | 11 | 10 | i | i | 5 | 4 | i |
Jwo4={Jwo4=8-R[y/10]-I[{R[y/10]}/2]+3xI[{R[y/10]}/4]+9xI[{R[y/10]}/8] (Mod 12) & Tor=3-y (Mod 12)}&C[Jwo4<>Tor:Jwo4=i], whereas `i' is an imaginary number which means `Unknown' or `Indeterminate'. If the value of Jwo, Jwo2, Jwo3, Jwo4 or Jwo5 is not imaginary, it means that great natural disaster or war would occur in the year. | i | 1 | 0 | 1 | 0 | i | i | 7 | 6 | i |
Jwo5={Jwo5=8-y (Mod 10) & Z=9-y (Mod 12)}&C[(Jwo5<>2,10 & Z<>2,4,5,6,8,9,11):Jwo5=i], whereas `i' is an imaginary number which means `Unknown' or `Indeterminate'. If the value of Jwo, Jwo2, Jwo3, Jwo4 or Jwo5 is not imaginary, it means that great natural disaster or war would occur in the year. | 2,4,6,8 | 1,3,5,7,9,11 | 2,4,6,8 | 5,9,11 | 2,4,6,8 | 5,9,11 | 2,4,6,8 | 5,9,11 | 2,4,6,8 | 1,3,5,7,9,11 |
Sen=5xR[y/10]-I[{R[y/10]}/2]-9xI[{R[y/10]}/4]-3xI[{R[y/10]}/8] (Mod 12) | 5 | 9 | 2 | 9 | 2 | 6 | 11 | 3 | 8 | 0 |
Muk=11-5xR[y/10]-7xI[{R[y/10]}/2]+2xI[{R[y/10]}/3]+5xI[{R[y/10]}/4]+9xI[{R[y/10]}/8]-2xI[{R[y/10]}/9] (Mod 12) | 6 | 8 | 3 | 8 | 3 | 5 | 0 | 2 | 9 | 11 |
Dai=10-3xR[y/10]+3xI[{R[y/10]}/2]+3xI[{R[y/10]}/3]-3xI[{R[y/10]}/6]+9xI[{R[y/10]}/9] (Mod 12) | 7 | 7 | 4 | 7 | 4 | 4 | 1 | 1 | 10 | 10 |
Lam=9-R[y/10]-I[{R[y/10]}/2]+3xI[{R[y/10]}/4]-3xI[{R[y/10]}/8] (Mod 12) | 8 | 6 | 5 | 6 | 5 | 3 | 2 | 0 | 11 | 9 |
Won=8+R[y/10]-5xI[{R[y/10]}/2]+5xI[{R[y/10]}/4]-2xI[{R[y/10]}/5]+7xI[{R[y/10]}/8] (Mod 12) | 9 | 5 | 6 | 5 | 6 | 2 | 3 | 11 | 0 | 8 |
Suy=7+3xR[y/10]-9xI[{R[y/10]}/2]+3xI[{R[y/10]}/4]-3xI[{R[y/10]}/8] (Mod 12) | 10 | 4 | 7 | 4 | 7 | 1 | 4 | 10 | 1 | 7 |
Bam=6+5xR[y/10]-I[{R[y/10]}/2]-9xI[{R[y/10]}/4]-3xI[{R[y/10]}/8] (Mod 12) | 11 | 3 | 8 | 3 | 8 | 0 | 5 | 9 | 2 | 6 |
Sei=5-5xR[y/10]+7xI[{R[y/10]}/2]+3xI[{R[y/10]}/4]+9xI[{R[y/10]}/8] (Mod 12) | 0 | 2 | 9 | 2 | 9 | 11 | 6 | 8 | 3 | 5 |
Moo=4-3xR[y/10]+3xI[{R[y/10]}/2]+3xI[{R[y/10]}/4]-3xI[{R[y/10]}/8] (Mod 12) | 1 | 1 | 10 | 1 | 10 | 10 | 7 | 7 | 4 | 4 |
Jut=3-R[y/10]-I[{R[y/10]}/2]+3xI[{R[y/10]}/4]+9xI[{R[y/10]}/8] (Mod 12) | 2 | 0 | 11 | 0 | 11 | 9 | 8 | 6 | 5 | 3 |
Toi=2+R[y/10]+7xI[{R[y/10]}/2]-9xI[{R[y/10]}/4]-3xI[{R[y/10]}/8] (Mod 12) | 3 | 11 | 0 | 11 | 0 | 8 | 9 | 5 | 6 | 2 |
Yeo=1+3xR[y/10]+3xI[{R[y/10]}/2]-9xI[{R[y/10]}/4]-3xI[{R[y/10]}/8] (Mod 12) | 4 | 10 | 1 | 10 | 1 | 7 | 10 | 4 | 7 | 1 |
Ego (U) & Yearon meet / Remainder of Year in A.D. y: R=R[y/10] | R=1 | R=2 | R=3 | R=4 | R=5 | R=6 | R=7 | R=8 | R=9 | R=0 |
Inc: Ego=(U+5)&C{R[U/2]=0:-2} (Mod 10) | Ego=3 | Ego=6 | Ego=5 | Ego=8 | Ego=7 | Ego=10 | Ego=9 | Ego=2 | Ego=1 | Ego=4 |
Win: Ego=U+4 (Mod 10) | Ego=4 | Ego=5 | Ego=6 | Ego=7 | Ego=8 | Ego=9 | Ego=10 | Ego=1 | Ego=2 | Ego=3 |
Los: Ego=(U-1)&C{R[U/2]=1:+2} (Mod 10) | Ego=7 | Ego=10 | Ego=9 | Ego=2 | Ego=1 | Ego=4 | Ego=3 | Ego=6 | Ego=5 | Ego=8 |
Zone Number of `Yearon' / Remainder of Year in A.D. y: R=R[y/10] | R=1 | R=2 | R=3 | R=4 | R=5 | R=6 | R=7 | R=8 | R=9 | R=0 |
Jwo={Jwo=3xR[y/10]+4xI[{R[y/10]}/2]-2xI[{R[y/10]}/3]+2xI[{R[y/10]}/6]-2xI[{R[y/10]}/7]+4xI[{R[y/10]}/8] (Mod 12) & Z=8+y (Mod 12)}&C[Jwo<>Z:Jwo=i], whereas `i' is an imaginary number which means `Unknown' or `Indeterminate'. If the value of Jwo, Jwo2, Jwo3, Jwo4 or Jwo5 is not imaginary, it means that great natural disaster or war would occur in the year. | 3 | 10 | 11 | 6 | 9 | 4 | 5 | 4 | 5 | 0 |
Jwo2={Jwo2=2+3xR[y/10]+4xI[{R[y/10]}/2]-2xI[{R[y/10]}/3]+2xI[{R[y/10]}/6]-2xI[{R[y/10]}/7]+4xI[{R[y/10]}/8] (Mod 12) & Z=8+y (Mod 12)}&C[Jwo2<>Z:Jwo2=i], whereas `i' is an imaginary number which means `Unknown' or `Indeterminate'. If the value of Jwo, Jwo2, Jwo3, Jwo4 or Jwo5 is not imaginary, it means that great natural disaster or war would occur in the year. | 5 | 0 | 1 | 8 | 11 | 6 | 7 | 6 | 7 | 2 |
Jwo3={Jwo3=9+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12) & Yeu=2+y (Mod 12)}&C[Jwo3<>Yeu:Jwo3=i], whereas `i' is an imaginary number which means `Unknown' or `Indeterminate'. If the value of Jwo, Jwo2, Jwo3, Jwo4 or Jwo5 is not imaginary, it means that great natural disaster or war would occur in the year. | i | 4 | 5 | i | i | 10 | 11 | 10 | 11 | i |
Jwo4={Jwo4=7+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12) & Tor=2+y (Mod 12)}&C[Jwo4<>Tor:Jwo4=i], whereas `i' is an imaginary number which means `Unknown' or `Indeterminate'. If the value of Jwo, Jwo2, Jwo3, Jwo4 or Jwo5 is not imaginary, it means that great natural disaster or war would occur in the year. | i | 6 | 7 | i | i | 0 | 1 | 0 | 1 | i |
Jwo5={Jwo5=7+y (Mod 10) & Z=8+y (Mod 12)}&C[(Jwo5<>6,8 & Z<>2,4,5,6,8,9,11):Jwo5=i], whereas `i' is an imaginary number which means `Unknown' or `Indeterminate'. If the value of Jwo, Jwo2, Jwo3, Jwo4 or Jwo5 is not imaginary, it means that great natural disaster or war would occur in the year. | 1,3,5,7,9,11 | 2,4,6,8 | 5,9,11 | 2,4,6,8 | 5,9,11 | 2,4,6,8 | 5,9,11 | 2,4,6,8 | 1,3,5,7,9,11 | 2,4,6,8 |
Ff=Chzon / Houron / Monthon | Kk | Fu | Ym | Mo | Chz | Ch | Ke | Bu | Le | Fuo |
Fk=Chzon | Ta | Chz | Ku | Pr | Le | Ke | Tg | Ym | Tm | Mo |
Fl=Chzon | Ku | Le | Pr | Lm | Ke | Tg | Ym | Tm | Mo | Ta |
Fj=Chzon / Houron | Ch | Mo | Tm | Ta | Ym | Lm | Ku | Ke | Kk | Tg |
Inc: R[y/10]=(Ego+5)&C{R[Ego/2]=0:-2} (Mod 10) | Ego=1 | Ego=4 | Ego=3 | Ego=6 | Ego=5 | Ego=8 | Ego=7 | Ego=10 | Ego=9 | Ego=2 |
Win: R[y/10]=Ego+4 (Mod 10) | Ego=2 | Ego=3 | Ego=4 | Ego=5 | Ego=6 | Ego=7 | Ego=8 | Ego=9 | Ego=10 | Ego=1 |
Los: R[y/10]=(Ego-1)&C{R[Ego/2]=1:+2} (Mod 10) | Ego=7 | Ego=10 | Ego=9 | Ego=2 | Ego=1 | Ego=4 | Ego=3 | Ego=6 | Ego=5 | Ego=8 |
Cfu=7+3xI[{R[y/10]}/2]-3xI[{R[y/10]}/4]-9xI[{R[y/10]}/8] (Mod 12) | 7 | 10 | 10 | 10 | 10 | 1 | 1 | 4 | 4 | 7 |
Luk=8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12) | 9 | 11 | 0 | 2 | 3 | 5 | 6 | 5 | 6 | 8 |
Yeu=9+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12) | 10 | 0 | 1 | 3 | 4 | 6 | 7 | 6 | 7 | 9 |
Tor=7+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12) | 8 | 10 | 11 | 1 | 2 | 4 | 5 | 4 | 5 | 7 |
Remark: `Yeu' & `Tor' are inter-changeable in pairs. Yeu=9-R[y/10]+5xI[R[y/10]/2]-3xI[R[y/10]/8] (Mod 12) | 8 | 0 | 11 | 3 | 2 | 6 | 5 | 6 | 5 | 9 |
Remark: `Yeu' & `Tor' are inter-changeable in pairs. Tor=7+3xR[y/10]-3xI[R[y/10]/2]-3xI[R[y/10]/8] (Mod 12) | 10 | 10 | 1 | 1 | 4 | 4 | 7 | 4 | 7 | 7 |
Fui=1+R[y/10]+I[{R[y/10]}/3]+I[{R[y/10]}/4]-I[{R[y/10]}/6]+I[{R[y/10]}/7]-3xI[{R[y/10]}/9] (Mod 12) | 2 | 3 | 5 | 7 | 8 | 9 | 11 | 1 | 0 | 1 |
Eut=7-R[y/10]-I[{R[y/10]}/3]-I[{R[y/10]}/4]+I[{R[y/10]}/6]-I[{R[y/10]}/7]+3xI[{R[y/10]}/9] (Mod 12) | 6 | 5 | 3 | 1 | 0 | 11 | 9 | 7 | 8 | 7 |
Chw=11+R[y/10]+3xI[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12) | 0 | 2 | 3 | 5 | 6 | 8 | 9 | 8 | 9 | 11 |
Kkw=3-R[y/10]-I[{R[y/10]}/2]+3xI[{R[y/10]}/8] (Mod 12) | 2 | 0 | 11 | 9 | 8 | 6 | 5 | 6 | 5 | 3 |
Fkw=4+R[y/10]-2xI[{R[y/10]}/2]-2xI[{R[y/10]}/3]-2xI[{R[y/10]}/5]+2xI[{R[y/10]}/6]+8xI[{R[y/10]}/7]+2xI[{R[y/10]}/10] (Mod 12) | 5 | 4 | 3 | 2 | 1 | 0 | 9 | 8 | 7 | 6 |
Gkw={2+R[y/10]+I[{R[y/10]}/2]+2xI[{R[y/10]}/3]-10xI[{R[y/10]}/4]+5xI[{R[y/10]}/5]-I[{R[y/10]}/6]-7xI[{R[y/10]}/7]}&C[R[y/10]=8:4,10]&C[R[y/10]=9:1,7] (Mod 12) | 3 | 5 | 8 | 0 | 6 | 9 | 3 | 4,10 | 1,7 | 2 |
Jkw={11-9xR[y/2]}&C{R[y/10]>3:5+3xR[y/2]} (Mod 12) | 2 | 11 | 2 | 5 | 8 | 5 | 8 | 5 | 8 | 11 |
Tyh=6-R[y/10]+5xI[R[y/10]/2] (Mod 12) | 5 | 9 | 8 | 0 | 11 | 3 | 2 | 6 | 5 | 6 |
Gun=11-2xR[y/10]+3xI[{R[y/10]}/2]-2xI[{R[y/10]}/3]-I[{R[y/10]}/5]+2xI[{R[y/10]}/6]-I[{R[y/10]}/7]-2xI[{R[y/10]}/9] (Mod 12) | 9 | 10 | 6 | 7 | 4 | 5 | 2 | 3 | 9 | 11 |
Fuk=6-R[y/10]+2xI[{R[y/10]}/2]+3xI[{R[y/10]}/4]+3xI[{R[y/10]}/6]-4xI[{R[y/10]}/8]-8xI[{R[y/10]}/9] (Mod 12) | 5 | 6 | 5 | 9 | 8 | 0 | 11 | 3 | 2 | 6 |
Tyn=11-3xR[y/10]+I[{R[y/10]}/2]+2xI[{R[y/10]}/3]-I[{R[y/10]}/4]+9xI[{R[y/10]}/6]+I[{R[y/10]}/7]+2xI[{R[y/10]}/8]-2xI[{R[y/10]}/9] (Mod 12) | 8 | 6 | 5 | 2 | 11 | 8 | 6 | 5 | 2 | 11 |
Hok=5-5xR[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12) | 0 | 8 | 3 | 11 | 6 | 2 | 9 | 2 | 9 | 5 |
Chu=2+4xR[y/10]-I[{R[y/10]}/2]-2xI[{R[y/10]}/3]+3xI[{R[y/10]}/4]-3xI[{R[y/10]}/5]+5xI[{R[y/10]}/6]+I[{R[y/10]}/7]-3xI[{R[y/10]}/8]-2xI[{R[y/10]}/9] (Mod 12) | 6 | 9 | 11 | 5 | 6 | 0 | 5 | 6 | 8 | 2 |
Har=4-R[y/10]+9xI[{R[y/10]}/2]-8xI[{R[y/10]}/3]-I[{R[y/10]}/4]+2xI[{R[y/10]}/5]-3xI[{R[y/10]}/6]+2xI[{R[y/10]}/7]+2xI[{R[y/10]}/8]-2xI[{R[y/10]}/9] (Mod 12) | 3 | 11 | 2 | 9 | 10 | 7 | 8 | 5 | 6 | 4 |
Yue=10+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12) | 11 | 1 | 2 | 4 | 5 | 7 | 8 | 7 | 8 | 10 |
Yim=10-R[y/10]+4xI[{R[y/10]}/2]-3xI[{R[y/10]}/3]-5xI[{R[y/10]}/4]+3xI[{R[y/10]}/5]-8xI[{R[y/10]}/6]+8xI[{R[y/10]}/7]-I[{R[y/10]}/8]+4xI[{R[y/10]}/9] (Mod 12) | 9 | 0 | 8 | 6 | 8 | 2 | 7 | 4 | 4 | 10 |
Jit=7-2xR[y/10]+9xI[{R[y/10]}/4]+3xI[{R[y/10]}/8]-I[{R[y/10]}/9] (Mod 12) | 5 | 3 | 1 | 8 | 6 | 4 | 2 | 0 | 9 | 7 |
Sen=5-5xR[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12) | 0 | 8 | 3 | 11 | 6 | 2 | 9 | 2 | 9 | 5 |
Muk=6+5xR[y/10]-7xI[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12) | 11 | 9 | 2 | 0 | 5 | 3 | 8 | 3 | 8 | 6 |
Dai=7+3xR[y/10]-3xI[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12) | 10 | 10 | 1 | 1 | 4 | 4 | 7 | 4 | 7 | 7 |
Lam=8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12) | 9 | 11 | 0 | 2 | 3 | 5 | 6 | 5 | 6 | 8 |
Won=9-R[y/10]-7xI[{R[y/10]}/2]+9xI[{R[y/10]}/8] (Mod 12) | 8 | 0 | 11 | 3 | 2 | 6 | 5 | 6 | 5 | 9 |
Suy=10-3xR[y/10]-3xI[{R[y/10]}/2]+9xI[{R[y/10]}/8] (Mod 12) | 7 | 1 | 10 | 4 | 1 | 7 | 4 | 7 | 4 | 10 |
Bam=11-5xR[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12) | 6 | 2 | 9 | 5 | 0 | 8 | 3 | 8 | 3 | 11 |
Sei=5xR[y/10]-7xI[{R[y/10]}/2]+9xI[{R[y/10]}/8] (Mod 12) | 5 | 3 | 8 | 6 | 11 | 9 | 2 | 9 | 2 | 0 |
Moo=1+3xR[y/10]-3xI[{R[y/10]}/2]+9xI[{R[y/10]}/8] (Mod 12) | 4 | 4 | 7 | 7 | 10 | 10 | 1 | 10 | 1 | 1 |
Jut=2+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12) | 3 | 5 | 6 | 8 | 9 | 11 | 0 | 11 | 0 | 2 |
Toi=3-R[y/10]+5xI[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12) | 2 | 6 | 5 | 9 | 8 | 0 | 11 | 0 | 11 | 3 |
Yeo=4-3xR[y/10]+9xI[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12) | 1 | 7 | 4 | 10 | 7 | 1 | 10 | 1 | 10 | 4 |
Bos=8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12) | 9 | 11 | 0 | 2 | 3 | 5 | 6 | 5 | 6 | 8 |
Lis=&C[{SC:m=0, f=1 & R[(SC+y)/2]=0}:9+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12) | 10 | 0 | 1 | 3 | 4 | 6 | 7 | 6 | 7 | 9 |
Lis=&C[{SC:m=0, f=1 & R[(SC+y)/2]=1}:7+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12) | 8 | 10 | 11 | 1 | 2 | 4 | 5 | 4 | 5 | 7 |
Clu=&C[{SC:m=0, f=1 & R[(SC+y)/2]=0}:10+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12) | 11 | 1 | 2 | 4 | 5 | 7 | 8 | 7 | 8 | 10 |
Clu=&C[{SC:m=0, f=1 & R[(SC+y)/2]=1}:6+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12) | 7 | 9 | 10 | 0 | 1 | 3 | 4 | 3 | 4 | 6 |
Sho=&C[{SC:m=0, f=1 & R[(SC+y)/2]=0}:11+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12) | 0 | 2 | 3 | 5 | 6 | 8 | 9 | 8 | 9 | 11 |
Sho=&C[{SC:m=0, f=1 & R[(SC+y)/2]=1}:5+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12) | 6 | 8 | 9 | 11 | 0 | 2 | 3 | 2 | 3 | 5 |
Ckn=&C[{SC:m=0, f=1 & R[(SC+y)/2]=0}:R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12) | 1 | 3 | 4 | 6 | 7 | 9 | 10 | 9 | 10 | 0 |
Ckn=&C[{SC:m=0, f=1 & R[(SC+y)/2]=1}:4+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12) | 5 | 7 | 8 | 10 | 11 | 1 | 2 | 1 | 2 | 4 |
Csu=&C[{SC:m=0, f=1 & R[(SC+y)/2]=0}:1+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12) | 2 | 4 | 5 | 7 | 8 | 10 | 11 | 10 | 11 | 1 |
Csu=&C[{SC:m=0, f=1 & R[(SC+y)/2]=1}:3+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12) | 4 | 6 | 7 | 9 | 10 | 0 | 1 | 0 | 1 | 3 |
Lim=2+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12) | 3 | 5 | 6 | 8 | 9 | 11 | 0 | 11 | 0 | 2 |
Hee=&C[{SC:m=0, f=1 & R[(SC+y)/2]=0}:3+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12) | 4 | 6 | 7 | 9 | 10 | 0 | 1 | 0 | 1 | 3 |
Hee=&C[{SC:m=0, f=1 & R[(SC+y)/2]=1}:1+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12) | 2 | 4 | 5 | 7 | 8 | 10 | 11 | 10 | 11 | 1 |
Cbm=&C[{SC:m=0, f=1 & R[(SC+y)/2]=0}:4+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12) | 5 | 7 | 8 | 10 | 11 | 1 | 2 | 1 | 2 | 4 |
Cbm=&C[{SC:m=0, f=1 & R[(SC+y)/2]=1}:R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12) | 1 | 3 | 4 | 6 | 7 | 9 | 10 | 9 | 10 | 0 |
Bai=&C[{SC:m=0, f=1 & R[(SC+y)/2]=0}:5+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12) | 6 | 8 | 9 | 11 | 0 | 2 | 3 | 2 | 3 | 5 |
Bai=&C[{SC:m=0, f=1 & R[(SC+y)/2]=1}:11+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12) | 0 | 2 | 3 | 5 | 6 | 8 | 9 | 8 | 9 | 11 |
Fbg=&C[{SC:m=0, f=1 & R[(SC+y)/2]=0}:6+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12) | 7 | 9 | 10 | 0 | 1 | 3 | 4 | 3 | 4 | 6 |
Fbg=&C[{SC:m=0, f=1 & R[(SC+y)/2]=1}:10+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12) | 11 | 1 | 2 | 4 | 5 | 7 | 8 | 7 | 8 | 10 |
Kfu=&C[{SC:m=0, f=1 & R[(SC+y)/2]=0}:7+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12) | 8 | 10 | 11 | 1 | 2 | 4 | 5 | 4 | 5 | 7 |
Kfu=&C[{SC:m=0, f=1 & R[(SC+y)/2]=1} :9+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12) | 10 | 0 | 1 | 3 | 4 | 6 | 7 | 6 | 7 | 9 |
Ego (U) & Yearon meet / Remainder of Year in A.D. y: R=R[y/12] & Year Root (Z): Z=8+y (Mod 12) | R=0, Z=8 | R=1, Z=9 | R=2, Z=10 | R=3, Z=11 | R=4, Z=0 | R=5, Z=1 | R=6, Z=2 | R=7, Z=3 | R=8, Z=4 | R=9, Z=5 | R=10, Z=6 | R=11, Z=7 |
Inc: Ego={(12-U)-7xI[U/5]+5xI[U/7]+5xI[U/9]+7xI[U/10]}&C[U=1:1, 7]&C[U=2:4, 10] (Mod 12) | Ego=4 | Ego=3 | Ego=2 | Ego=6 | Ego=5 | Ego=1 | Ego=8 | Ego=7 | Ego=2 | Ego=10 | Ego=9 | Ego=1 |
Win: Ego={(U+5)+I[U/5]+I[U/7]+I[U/9]}&C[U=1:4, 10]&C[U=2:1, 7] (Mod 12) | Ego=3 | Ego=4 | Ego=1 | Ego=5 | Ego=6 | Ego=2 | Ego=7 | Ego=8 | Ego=1 | Ego=9 | Ego=10 | Ego=2 |
Los: Ego={(4-U)+5xI[U/3]+2xI[U/7]}&C[U=5:1, 7]&C[U=6:4, 10] (Mod 12) | Ego=8 | Ego=7 | Ego=6 | Ego=10 | Ego=9 | Ego=5 | Ego=2 | Ego=1 | Ego=6 | Ego=4 | Ego=3 | Ego=5 |
Zone Number of `Yearon' / Remainder of Year in A.D. y: R=R[y/12] | R=0 | R=1 | R=2 | R=3 | R=4 | R=5 | R=6 | R=7 | R=8 | R=9 | R=10 | R=11 |
Inc: R[y/12]-4={(12-Ego)-7xI[Ego/5]+5xI[Ego/7]+5xI[Ego/9]+7xI[Ego/10]}&C[Ego=1:1,7]&C[Ego=2:4,10] (Mod 12) | Ego=4 | Ego=3 | Ego=2 | Ego=6 | Ego=5 | Ego=1 | Ego=8 | Ego=7 | Ego=2 | Ego=10 | Ego=9 | Ego=1 |
Win: R[y/12]-4={(Ego+5)+I[Ego/5]+I[Ego/7]+I[Ego/9]}&C[Ego=1:4,10]&C[Ego=2:1,7] (Mod 12) | Ego=3 | Ego=4 | Ego=1 | Ego=5 | Ego=6 | Ego=2 | Ego=7 | Ego=8 | Ego=1 | Ego=9 | Ego=10 | Ego=2 |
Los: R[y/12]-4={(4-Ego)+5xI[Ego/3]+2xI[Ego/7]}&C[Ego=5:1,7]&C[Ego=6:4,10] (Mod 12) | Ego=8 | Ego=7 | Ego=6 | Ego=10 | Ego=9 | Ego=5 | Ego=2 | Ego=1 | Ego=6 | Ego=4 | Ego=3 | Ego=5 |
Hui=2+y (Mod 12) | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 0 | 1 |
Huk=10-y (Mod 12) | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 11 |
Chi=y (Mod 12) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
Kok=2-y (Mod 12) | 2 | 1 | 0 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 |
Que/Kar=2+y (Mod 12) | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 0 | 1 |
Lun=7-y (Mod 12) | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 11 | 10 | 9 | 8 |
Hei=1-y (Mod 12) | 1 | 0 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 |
Yiu=7+y (Mod 12) | 7 | 8 | 9 | 10 | 11 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
Hoo=9+y (Mod 12) | 9 | 10 | 11 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Psu=9-4xR[y/3] (Mod 12) | 9 | 5 | 1 | 9 | 5 | 1 | 9 | 5 | 1 | 9 | 5 | 1 |
Goo=11-9xI[{R[y/12]}/3] (Mod 12) | 11 | 11 | 11 | 2 | 2 | 2 | 5 | 5 | 5 | 8 | 8 | 8 |
Gwa=7+3xI[{R[y/12]}/3] (Mod 12) | 7 | 7 | 7 | 10 | 10 | 10 | 1 | 1 | 1 | 4 | 4 | 4 |
Jfg=3xR[(y-1)/3]+2xI[{R[(y-1)/3]}/2] (Mod 12) | 8 | 0 | 3 | 8 | 0 | 3 | 8 | 0 | 3 | 8 | 0 | 3 |
Fei=4+y+6xI[{R[y/12]+2}/3] (Mod 12) | 4 | 11 | 0 | 1 | 8 | 9 | 10 | 5 | 6 | 7 | 2 | 3 |
Yei=7+y (Mod 12) | 7 | 8 | 9 | 10 | 11 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
Kwy=2-3xR[y/4] (Mod 12) | 2 | 11 | 8 | 5 | 2 | 11 | 8 | 5 | 2 | 11 | 8 | 5 |
Lfo=8+9xR[y/4] (Mod 12) | 8 | 5 | 2 | 11 | 8 | 5 | 2 | 11 | 8 | 5 | 2 | 11 |
Cak=10-7xR[y/12] (Mod 12) | 10 | 3 | 8 | 1 | 6 | 11 | 4 | 9 | 2 | 7 | 0 | 5 |
Tdo=5+3xR[y/4] (Mod 12) | 5 | 8 | 11 | 2 | 5 | 8 | 11 | 2 | 5 | 8 | 11 | 2 |
Pik=6+4xR[y/12]+2xI[{R[y/12]}/3]+7xI[{R[y/12]}/4]-3xI[{R[y/12]}/6]+2xI[{R[y/12]}/7]+10xI[{R[y/12]}/9]-2xI[{R[y/12]}/11] (Mod 12) | 6 | 10 | 2 | 8 | 7 | 11 | 2 | 8 | 7 | 11 | 3 | 5 |
Sui=3+6xR[y/4]-3xI[{R[y/4]}/2] (Mod 12) | 3 | 9 | 0 | 6 | 3 | 9 | 0 | 6 | 3 | 9 | 0 | 6 |
Yng=2+7xR[y/12]+3xI[{R[y/12]}/2]+9xI[{R[y/12]}/3]-6xI[{R[y/12]}/4] (Mod 12) | 2 | 9 | 7 | 11 | 3 | 10 | 5 | 0 | 4 | 8 | 6 | 1 |
Hoi=11-y (Mod 12) | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
Por=5+R[y/12]-6x{R[y/12]-4} (Mod 12) | 5 | 0 | 7 | 2 | 9 | 4 | 11 | 6 | 1 | 8 | 3 | 10 |
Aat=4-y (Mod 12) | 4 | 3 | 2 | 1 | 0 | 11 | 10 | 9 | 8 | 7 | 6 | 5 |
Ysi=&C{R[y/12]=0, 1:10}&C{R[y/12]=3, 10:4}&C{R[y/12]=4, 8:1}&C{R[y/12]=5:2}&C{R[y/12]=9:9} (Mod 12) | 10 | 10 | - | 4 | 1 | 2 | - | - | 1 | 9 | 4 | - |
Nik=10-9xI[{R[y/12]}/3] (Mod 12) | 10 | 10 | 10 | 1 | 1 | 1 | 4 | 4 | 4 | 7 | 7 | 7 |
Hom=5+2xR[y/12]-9xI[{R[y/12]}/3]+6xI[{R[y/12]}/4]-6xI[{R[y/12]}/5]+I[{R[y/12]}/6]+6xI[{R[y/12]}/7]-6xI[{R[y/12]}/9]+2xI[{R[y/12]}/10]+8xI[{R[y/12]}/11] (Mod 12) | 5 | 7 | 9 | 2 | 10 | 6 | 0 | 8 | 4 | 3 | 1 | 11 |
Yuk=5-3xR[y/4] (Mod 12) | 5 | 2 | 11 | 8 | 5 | 2 | 11 | 8 | 5 | 2 | 11 | 8 |
Gak=3xI[{R[y/12]}/3] (Mod 12) | 3 | 3 | 6 | 6 | 6 | 9 | 9 | 9 | 0 | 0 | 0 | 3 |
Kam=9xR[y/4] (Mod 12) | 0 | 9 | 6 | 3 | 0 | 9 | 6 | 3 | 0 | 9 | 6 | 3 |
Can=9+R[(y+2)/6] (Mod 12) | 11 | 0 | 1 | 2 | 9 | 10 | 11 | 0 | 1 | 2 | 9 | 10 |
Bau=3+R[(y+2)/6] (Mod 12) | 5 | 6 | 7 | 8 | 3 | 4 | 5 | 6 | 7 | 8 | 3 | 4 |
Chm=9xR[y/4] (Mod 12) | 0 | 9 | 6 | 3 | 0 | 9 | 6 | 3 | 0 | 9 | 6 | 3 |
Pan=1+9xR[y/4] (Mod 12) | 1 | 10 | 7 | 4 | 1 | 10 | 7 | 4 | 1 | 10 | 7 | 4 |
Yik=2+9xR[y/4] (Mod 12) | 2 | 11 | 8 | 5 | 2 | 11 | 8 | 5 | 2 | 11 | 8 | 5 |
Sik=3+9xR[y/4] (Mod 12) | 3 | 0 | 9 | 6 | 3 | 0 | 9 | 6 | 3 | 0 | 9 | 6 |
Wah=4+9xR[y/4] (Mod 12) | 4 | 1 | 10 | 7 | 4 | 1 | 10 | 7 | 4 | 1 | 10 | 7 |
Cip=5+9xR[y/4] (Mod 12) | 5 | 2 | 11 | 8 | 5 | 2 | 11 | 8 | 5 | 2 | 11 | 8 |
Joi=6+9xR[y/4] (Mod 12) | 6 | 3 | 0 | 9 | 6 | 3 | 0 | 9 | 6 | 3 | 0 | 9 |
Tst=7+9xR[y/4] (Mod 12) | 7 | 4 | 1 | 10 | 7 | 4 | 1 | 10 | 7 | 4 | 1 | 10 |
Zhi=8+9xR[y/4] (Mod 12) | 8 | 5 | 2 | 11 | 8 | 5 | 2 | 11 | 8 | 5 | 2 | 11 |
Ham=9+9xR[y/4] (Mod 12) | 9 | 6 | 3 | 0 | 9 | 6 | 3 | 0 | 9 | 6 | 3 | 0 |
Yut=10+9xR[y/4] (Mod 12) | 10 | 7 | 4 | 1 | 10 | 7 | 4 | 1 | 10 | 7 | 4 | 1 |
Mon=11+9xR[y/4] (Mod 12) | 11 | 8 | 5 | 2 | 11 | 8 | 5 | 2 | 11 | 8 | 5 | 2 |
Kim=8+y (Mod 12) | 8 | 9 | 10 | 11 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Zee=8+y (Mod 12) | 8 | 9 | 10 | 11 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Fym=9+y (Mod 12) | 9 | 10 | 11 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Sog=10+y (Mod 12) | 10 | 11 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Sok=11+y (Mod 12) | 11 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Kun=y (Mod 12) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
Sfu=1+y (Mod 12) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 0 |
Buy=2+y (Mod 12) | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 0 | 1 |
Ark=3+y (Mod 12) | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 0 | 1 | 2 |
Foo=4+y (Mod 12) | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 0 | 1 | 2 | 3 |
Sit=5+y (Mod 12) | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 0 | 1 | 2 | 3 | 4 |
Diu=6+y (Mod 12) | 6 | 7 | 8 | 9 | 10 | 11 | 0 | 1 | 2 | 3 | 4 | 5 |
Bag=7+y (Mod 12) | 7 | 8 | 9 | 10 | 11 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
Coi=8+y+m-A[h/2] (Mod 12) or Coi=S+8+y (Mod 12) & S=m-A[h/2] (Mod 12) | S+8 (Mod 12) | S+9 (Mod 12) | S+10 (Mod 12) | S+11 (Mod 12) | S+0 (Mod 12) | S+1 (Mod 12) | S+2 (Mod 12) | S+3 (Mod 12) | S+4 (Mod 12) | S+5 (Mod 12) | S+6 (Mod 12) | S+7 (Mod 12) |
Sau=8+y+m+A[h/2] (Mod 12) or Sau=B+8+y (Mod 12) & B=m+A[h/2] (Mod 12) | B+8 (Mod 12) | B+9 (Mod 12) | B+10 (Mod 12) | B+11 (Mod 12) | B+0 (Mod 12) | B+1 (Mod 12) | B+2 (Mod 12) | B+3 (Mod 12) | B+4 (Mod 12) | B+5 (Mod 12) | B+6 (Mod 12) | B+7 (Mod 12) |
Zone Number of `Yearon' / Numerology (N) in A.D. y: N=57+R[y/60] (Mod 60) | N=1~10 | N=11~20 | N=21~30 | N=31~40 | N=41~50 | N=51~60 |
Chn=10-2xI[{56+R[y/60]}/10] (Mod 12) | 10 | 8 | 6 | 4 | 2 | 0 |
Chn2=11-2xI[{56+R[y/60]}/10] (Mod 12) or Chn2=Chn+1 (Mod 12) | 11 | 9 | 7 | 5 | 3 | 1 |
Chn & Chn2 | 10 & 11 | 8 & 9 | 6 & 7 | 4 & 5 | 2 & 3 | 0 & 1 |
Explanation | There are many `Timeons' which are directly related to year. They are named as `Fate Particle' of year or `yearon'. The codes of these `yearons' are:
1.`Ff'. 2.`Fk'. 3.`Fl'. 4.`Fj'. 5.`Inc'. 6.`Win'. 7.`Los'. 8.`Cfu', 9.`Luk'. 10.`Yeu'. 11.`Tor'. 12.`Fui'. 13.`Eut'. 14.`Chw'. 15.`Kkw'. 16.`Fkw'. 17.`Gkw'. 18.`Jkw'. 19.`Tyh'. 20.`Gun'. 21.`Fuk'. 22.`Tyn'. 23.`Hok'. 24.`Chu'. 25.`Har'. 26.`Yue'. 27.`Yim'. 28.`Jit'. 29.`Bos'. 30.`Lis'. 31.`Clu'. 32.`Sho'. 33.`Ckn'. 34.`Csu'. 35.`Lim'. 36.`Hee'. 37.`Cbm'. 38.`Bai'. 39.`Fbg'. 40.`Kfu'. 41.`Hop'. 42.`Cxy'. 43.`Hak'. 44.`Jwo'. 45.`Jwo2'. 46.`Jwo3'. 47.`Jwo4'. 48.`Jwo5'. 49.`Hui'. 50.`Huk'. 51.`Chi'. 52.`Kok'. 53.`Que/Kar'. 54.`Lun'. 55.`Hei'. 56.`Ham'. 57.`Hoo'. 58.`Cip'. 59.`Joi'. 60.`Tst'. 61.`Sha'. 62.`Psu'. 63.`Goo'. 64.`Gwa'. 65.`Jfg'. 66.`Fei'. 67.`Yee'. 68.`Yei'. 69.`Kwy'. 70.`Yng'. 71.`Hoi'. 72.`Por'. 73.`Pik'. 74.`Lfo'. 75.`Fym'. 76.`Ysi'. 77.`Aat'. 78.`Bau'. 79.`Can'. 80.`Sui'. 81.`Nik'. 82.`Hom'. 83.`Gau'. 84.`Yuk'. 85.`Gak'. 86.`Cak'. 87.`Tdo'. 88.`Kam'. 89.`Chm'. 90.`Pan'. 91.`Yik'. 92.`Wah'. 93.`Zhi'. 94.`Yut'. 95.`Sok'. 96.`Sik'. 97.`Sog'. 98.`Mon'. 99.`Kim'. 100.`Zee'. 101.`Kun'. 102.`Sfu'. 103.`Buy'. 104.`Ark'. 105.`Foo'. 106.`Sit'. 107.`Diu'. 108.`Bag'. 109.`Coi'. 110.`Sau'. 111.`Chn' & `Chn2'.
The `Yearons' each has fantastic power and lays invisible stress with different influence on human destiny within a year. In general,
`Ff' means `Academy' or `Announcement'. `Fk' means `Authority' or `Ratification'. `Fl' means `Income' or `Money'. `Fj' means `Adversity' or `Apprehension'. `Inc' means `Income' or `Salary'. `Win' means `Win' or `Gift'. `Los' means `Loss' or `Failure'. `Cfu' means `Wealth' or `Property'. `Luk' means `Power' or `Wealth'. `Yeu' means `Injury' or `Destruction'. `Tor' means `Injury' or `Destruction'. `Fui' means `Outstanding'. `Eut' means `Outstanding'. `Chw' means `Knowledge' or `Education'. `Kkw' means `Oration' or `Music'. `Fkw' means `Felicity' or `Longevity'. `Gkw' means `Religion' or `Fortune-telling'. `Jkw' means `Peerage' or `Power'. `Tyh' means `Official' or `Power'. `Gun' means `Promotion' or `Childbirth'. `Fuk' means `Felicity' or `Childbirth'. `Tyn' means `Grace'. `Hok' means `Learning' or `Hall'. `Chu' means `Eating' or `Food'. `Har' means `Aboard' or `Childbirth'. `Yue' means `Vehicle' or `Transportation'. `Yim' means `Lascivious', `Masturbation' or `Blood'. `Jit' means `Stop' or `Nil'. `Bos' means `Knowledge' or `Culture'. `Lis' means `Strength'. `Clu' means `Protection'. `Sho' means `Loss'. `Ckn' means `Rudeness'. `Csu' means `Inform' or `Declare'. `Lim' means `Sickness',`Loneliness' or `Flight'. `Hee' means `Gathering'. `Cbm' means `Sickliness'. `Bai' means `Bankruptcy'. `Fbg' means `ambush' or `trap'. `Kfu' means `Court' or `Litigation'. `Hop' means `Love' or `Marriage'. `Cxy' means `Suppression' or `Injury'. `Hak' means `Sick', `Adversity' or `Departure'. `Jwo' means `Natural disaster' or `War'. `Jwo2' means `Natural disaster' or `War'. `Jwo3' means `Natural disaster' or `War'. `Jwo4' means `Natural disaster' or `War'. `Hui' means `Weakness' or `Empty'. `Huk' means `Sorrow' or `Loss'. `Chi' means `Arts' or `Place'. `Kok' means `Design' or `Room'. `Que/Kar' means `Love' or `Marriage'. `Lun' means `Female', `Marriage' or `Blood'. `Hei' means `Happiness' or `Pregnancy'. `Ham' means `Lustful', `Masturbate' or `Adultery'. `Hoo' means `Consumption' or `Exhaustion'. `Cip' means `Robbery' or `Kidnapping'. `Joi' means `Calamity' or `Disaster'. `Tst' means `Smite' or `Kill'. `Sha' means `Gauze' or `Marriage'. `Psu' means `Puncture' or `Wounded'. `Goo' means `Loneliness' or `Detention'. `Gwa' means `Sleep alone' or `Detention'. `Jfg' means `Sexual dysfunction' or `No intercourse'. `Fei' means `Lonliness', `Plague' or `Flight'. `Yee' means `Cure' or `Disease'. `Yei' means `Medical treatment' or `Doctor'. `Kwy' means `Peerage'. `Yng' means `Wounded' or `Surgery'. `Hoi' means `Disaster' or `Sickness'. `Por' means `Puncture' or `Broken'. `Pik' means `Bang' or `Thunder'. `Lfo' means `Bombard', `Gunshot' or `Radiation'. `Fym' means `Fire', `Burning' or `Radiation'. `Ysi' means `Assassinate' or `Trap'. `Aat' means `Collapse' or `Death'. `Bau' means `Pregnancy', `Childbirth' or `Tumor'. `Can' means `Parturition', `Reincarnation' or `Tumor'. `Sui' means `Flood' or `Fluid'. `Nik' means `Water' or `Drown'. `Hom' means `Pitfall' or `Swallow'. `Gau' means `Bondage' or `Twist'. `Yuk' means `Detention' or `Imprison'. `Gak' means `Quarantine' or `Quarrel'. `Cak' means `Thief' or `Steal'. `Tdo' means `Thief' or `Steal'. `Kam' means `Wealth' or `Money'. `Chm' means `Brave' or `Fierce'. `Pan' means `Promotion' or `Travel'. `Yik' means `Ride' or `Motion'. `Wah' means `Religion' or `Fortune-telling'. `Zhi' means `Accusation'. `Yut' means `Smite' or `Kill'. `Sok' means `Seizing', `Bondage', `Rope' or `Umbilical cord'. `Sik' means `Rest' or `Dead'. `Sog' means `Death' or `Mourning'. `Mon' means `Death' or `Loss'. `Kim' means `War' or `Wound'. `Zee' means `Fall down' or `Dead body'. `Kun' means `Police' or `Litigation'. `Sfu' means `Death order' or `Sick'. `Buy' means `Loss' or `Destruction'. `Ark' means `Danger' or `Disaster'. `Foo' means `Sick' or `Murder'. `Sit' means `Talk', `Quarrel', `Eat' or `Lick'. `Diu' means `Condolence' or `Console'. `Bag' means `Influenza' or `Sick'. `Coi' means `Genius' or `Clever'. `Sau' means `Life limit'. `Chn' & `Chn2' mean `Empty', `Loss' or `Extermination'.
There are five Earth's Great Disaster Formulae (Jwo, Jwo2, Jwo3, Jwo4 & Jwo5) for year `y' in B.C. whereas `i' is an imaginary number which means `Unknown' or `Indeterminate'. The Earth's Great Disaster Formulae are:
Jwo={Jwo=3-3xR[y/10]+8xI[{R[y/10]}/2]+2xI[{R[y/10]}/3]-4xI[{R[y/10]}/4]+2xI[{R[y/10]}/5]-2xI[{R[y/10]}/6]+4xI[{R[y/10]}/8] (Mod 12) & Z=9-y (Mod 12)}&C[Jwo<>Z:Jwo=i]. This formula is derived from `Tor' meets `Opposite Zone' of `Year Root' (Z), or `Year Stem' (U) meets `Timeons' of `Sei', `Moo' or `Jut'.
Jwo2={Jwo2=5-3xR[y/10]+8xI[{R[y/10]}/2]+2xI[{R[y/10]}/3]-4xI[{R[y/10]}/4]+2xI[{R[y/10]}/5]-2xI[{R[y/10]}/6]-8xI[{R[y/10]}/8] (Mod 12) & Z=9-y (Mod 12)}&C[Jwo2<>Z:Jwo2=i]. This formula is derived from `Yeu' meets `Opposite Zone' of `Year Root' (Z), or `Year Stem' (U) meets `Timeons' of `Sei', `Moo' or `Jut'.
Jwo3={Jwo3=10-R[y/10]-I[{R[y/10]}/2]+3xI[{R[y/10]}/4]+9xI[{R[y/10]}/8] (Mod 12) & Yeu=3-y (Mod 12)}&C[Jwo3<>Yeu:Jwo3=i]. This formula is derived from `Yeu' meets `Year Root' (Z), or `Year Stem' (U) meets `Timeons' of `Sei', `Moo' or `Jut'.
Jwo4={Jwo4=8-R[y/10]-I[{R[y/10]}/2]+3xI[{R[y/10]}/4]+9xI[{R[y/10]}/8] (Mod 12) & Tor=3-y (Mod 12)}&C[Jwo4<>Tor:Jwo4=i]. This formula is derived from `Tor' meets `Year Root' (Z), or `Year Stem' (U) meets `Timeons' of `Sei', `Moo' or `Jut'.
Jwo5={Jwo5=8-y (Mod 10) & Z=9-y (Mod 12)}&C[(Jwo5<>2,10 & Z<>2,4,5,6,8,9,11):Jwo5=i]. This formula is derived from `Lfo', `Pik' or `Yng' meets `Year Root' (Z).
There are five Earth's Great Disaster Formulae (Jwo, Jwo2, Jwo3, Jwo4 & Jwo5) for year `y' in A.D. whereas `i' is an imaginary number which means `Unknown' or `Indeterminate'. The Earth's Great Disaster Formulae are:
Jwo={Jwo=3xR[y/10]+4xI[{R[y/10]}/2]-2xI[{R[y/10]}/3]+2xI[{R[y/10]}/6]-2xI[{R[y/10]}/7]+4xI[{R[y/10]}/8] (Mod 12) & Z=8+y (Mod 12)}&C[Jwo<>Z:Jwo=i]. This formula is derived from `Tor' meets `Opposite Zone' of `Year Root' (Z), or `Year Stem' (U) meets `Timeons' of `Sei', `Moo' or `Jut'.
Jwo2={Jwo2=2+3xR[y/10]+4xI[{R[y/10]}/2]-2xI[{R[y/10]}/3]+2xI[{R[y/10]}/6]-2xI[{R[y/10]}/7]+4xI[{R[y/10]}/8] (Mod 12) & Z=8+y (Mod 12)}&C[Jwo2<>Z:Jwo2=i]. This formula is derived from `Yeu' meets `Opposite Zone' of `Year Root' (Z), or `Year Stem' (U) meets `Timeons' of `Sei', `Moo' or `Jut'.
Jwo3={Jwo3=9+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12) & Yeu=2+y (Mod 12)}&C[Jwo3<>Yeu:Jwo3=i]. This formula is derived from `Yeu' meets `Year Root' (Z), or `Year Stem' (U) meets `Timeons' of `Sei', `Moo' or `Jut'.
Jwo4={Jwo4=7+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12) & Tor=2+y (Mod 12)}&C[Jwo4<>Tor:Jwo4=i]. This formula is derived from `Tor' meets `Year Root' (Z), or `Year Stem' (U) meets `Timeons' of `Sei', `Moo' or `Jut'.
Jwo5={Jwo5=7+y (Mod 10) & Z=8+y (Mod 12)}&C[(Jwo5<>6,8 & Z<>2,4,5,6,8,9,11):Jwo5=i]. This formula is derived from `Lfo', `Pik' or `Yng' meets `Year Root' (Z).
The Yearon Formulae for year `y' in B.C. are:
Sen=5xR[y/10]-I[{R[y/10]}/2]-9xI[{R[y/10]}/4]-3xI[{R[y/10]}/8] (Mod 12).
Muk=11-5xR[y/10]-7xI[{R[y/10]}/2]+2xI[{R[y/10]}/3]+5xI[{R[y/10]}/4]+9xI[{R[y/10]}/8]-2xI[{R[y/10]}/9] (Mod 12).
Dai=10-3xR[y/10]+3xI[{R[y/10]}/2]+3xI[{R[y/10]}/3]-3xI[{R[y/10]}/6]+9xI[{R[y/10]}/9] (Mod 12).
Lam=9-R[y/10]-I[{R[y/10]}/2]+3xI[{R[y/10]}/4]-3xI[{R[y/10]}/8] (Mod 12).
Won=8+R[y/10]-5xI[{R[y/10]}/2]+5xI[{R[y/10]}/4]-2xI[{R[y/10]}/5]+7xI[{R[y/10]}/8] (Mod 12).
Suy=7+3xR[y/10]-9xI[{R[y/10]}/2]+3xI[{R[y/10]}/4]-3xI[{R[y/10]}/8] (Mod 12).
Bam=6+5xR[y/10]-I[{R[y/10]}/2]-9xI[{R[y/10]}/4]-3xI[{R[y/10]}/8] (Mod 12).
Sei=5-5xR[y/10]+7xI[{R[y/10]}/2]+3xI[{R[y/10]}/4]+9xI[{R[y/10]}/8] (Mod 12).
Moo=4-3xR[y/10]+3xI[{R[y/10]}/2]+3xI[{R[y/10]}/4]-3xI[{R[y/10]}/8] (Mod 12).
Jut=3-R[y/10]-I[{R[y/10]}/2]+3xI[{R[y/10]}/4]+9xI[{R[y/10]}/8] (Mod 12).
Toi=2+R[y/10]+7xI[{R[y/10]}/2]-9xI[{R[y/10]}/4]-3xI[{R[y/10]}/8] (Mod 12).
Yeo=1+3xR[y/10]+3xI[{R[y/10]}/2]-9xI[{R[y/10]}/4]-3xI[{R[y/10]}/8] (Mod 12).
The Yearon Formulae for year `y' in A.D. are:
Sen=5-5xR[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12).
Muk=6+5xR[y/10]-7xI[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12).
Dai=7+3xR[y/10]-3xI[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12).
Lam=8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12).
Won=9-R[y/10]-7xI[{R[y/10]}/2]+9xI[{R[y/10]}/8] (Mod 12).
Suy=10-3xR[y/10]-3xI[{R[y/10]}/2]+9xI[{R[y/10]}/8] (Mod 12).
Bam=11-5xR[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12).
Sei=5xR[y/10]-7xI[{R[y/10]}/2]+9xI[{R[y/10]}/8] (Mod 12).
Moo=1+3xR[y/10]-3xI[{R[y/10]}/2]+9xI[{R[y/10]}/8] (Mod 12).
Jut=2+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12).
Toi=3-R[y/10]+5xI[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12).
Yeo=4-3xR[y/10]+9xI[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12).
The Yearon Formulae for year in `y' A.D. are:
Ff=Chzon/Houron/Monthon &C{R=R[y/10]: R=0:Fuo, R=1:Kk, R=2:Fu, R=3:Ym, R=4:Mo, R=5:Chz, R=6:Ch, R=7:Ke, R=8:Bu, R=9:Le} or Ff=Chzon/Houron/Monthon &C[U=1:Mo, U=2:Chz, U=3:Ch, U=4:Ke, U=5:Bu, U=6:Le, U=7:Fuo, U=8:Kk, U=9:Fu, U=10:Ym].
Fk=Chzon &C{R=R[y/10]: R=0:Mo, R=1:Ta, R=2:Chz, R=3:Ku, R=4:Pr, R=5:Le, R=6:Ke, R=7:Tg, R=8:Ym, R=9:Tm} or Fk=Chzon &C[U=1:Pr, U=2:Le, U=3:Ke, U=4:Tg, U=5:Ym, U=6:Tm, U=7:Mo, U=8:Ta, U=9:Chz, U=10:Ku].
Fl=Chzon &C{R=R[y/10]: R=0:Ta, R=1:Ku, R=2:Le, R=3:Pr, R=4:Lm, R=5:Ke, R=6:Tg, R=7:Ym, R=8:Tm, R=9:Mo} or Fl=Chzon &C[U=1:Lm, U=2:Ke, U=3:Tg, U=4:Ym, U=5:Tm, U=6:Mo, U=7:Ta, U=8:Ku, U=9:Le, U=10:Pr].
Fj=Chzon/Houron &C{R=R[y/10]: R=0:Tg, R=1:Ch, R=2:Mo, R=3:Tm, R=4:Ta, R=5:Ym, R=6:Lm, R=7:Ku, R=8:Ke, R=9:Kk} or Fj=Chzon/Houron &C[U=1:Ta, U=2:Ym, U=3:Lm, U=4:Ku, U=5:Ke, U=6:Kk, U=7:Tg, U=8:Ch, U=9:Mo, U=10:Tm].
Inc: R[y/10]=(Ego+5)&C{R[Ego/2]=0:-2} (Mod 10).
Win: R[y/10]=Ego+4 (Mod 10).
Los: R[y/10]=(Ego-1)&C{R[Ego/2]=1:+2} (Mod 10).
Cfu=7+3xI[{R[y/10]}/2]-3xI[{R[y/10]}/4]-9xI[{R[y/10]}/8] (Mod 12).
Luk=8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12).
Yeu=9+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12).
Tor=7+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12).
`Yeu' & `Tor' are interchangeable in pairs. If Yeu=9-R[y/10]+5xI[R[y/10]/2]-3xI[R[y/10]/8] (Mod 12) then Tor=7+3xR[y/10]-3xI[R[y/10]/2]-3xI[R[y/10]/8] (Mod 12).
[Remarks: `Yeu' and `Tor' must be interchanged in pairs. The values of `Yeu' and `Tor' for even solar year `y' are same as the original pairs.]
Fui=1+R[y/10]+I[{R[y/10]}/3]+I[{R[y/10]}/4]-I[{R[y/10]}/6]+I[{R[y/10]}/7]-3xI[{R[y/10]}/9] (Mod 12).
Eut=7-R[y/10]-I[{R[y/10]}/3]-I[{R[y/10]}/4]+I[{R[y/10]}/6]-I[{R[y/10]}/7]+3xI[{R[y/10]}/9] (Mod 12).
Chw=11+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12).
Kkw=3-R[y/10]-I[{R[y/10]}/2]+3xI[{R[y/10]}/8] (Mod 12).
Fkw=4+R[y/10]-2xI[{R[y/10]}/2]-2xI[{R[y/10]}/3]-2xI[{R[y/10]}/5]+2xI[{R[y/10]}/6]+8xI[{R[y/10]}/7]+2xI[{R[y/10]}/10] (Mod 12).
Gkw={2+R[y/10]+I[{R[y/10]}/2]+2xI[{R[y/10]}/3]-10xI[{R[y/10]}/4]+5xI[{R[y/10]}/5]-I[{R[y/10]}/6]-7xI[{R[y/10]}/7]}&C[R[y/10]=8:4,10]&C[R[y/10]=9:1,7] (Mod 12).
Jkw={11-9xR[y/2]}&C{R[y/10]>3:5+3xR[y/2]} (Mod 12).
Tyh=6-R[y/10]+5xI[R[y/10]/2] (Mod 12).
Gun=11-2xR[y/10]+3xI[{R[y/10]}/2]-2xI[{R[y/10]}/3]-I[{R[y/10]}/5]+2xI[{R[y/10]}/6]-I[{R[y/10]}/7]-2xI[{R[y/10]}/9] (Mod 12).
Fuk=6-R[y/10]+2xI[{R[y/10]}/2]+3xI[{R[y/10]}/4]+3xI[{R[y/10]}/6]-4xI[{R[y/10]}/8]-8xI[{R[y/10]}/9] (Mod 12).
Tyn=11-3xR[y/10]+I[{R[y/10]}/2]+2xI[{R[y/10]}/3]-I[{R[y/10]}/4]+9xI[{R[y/10]}/6]+I[{R[y/10]}/7]+2xI[{R[y/10]}/8]-2xI[{R[y/10]}/9] (Mod 12).
Hok=5-5xR[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12).
Chu=2+4xR[y/10]-I[{R[y/10]}/2]-2xI[{R[y/10]}/3]+3xI[{R[y/10]}/4]-3xI[{R[y/10]}/5]+5xI[{R[y/10]}/6]+I[{R[y/10]}/7]-3xI[{R[y/10]}/8]-2xI[{R[y/10]}/9] (Mod 12).
Har=4-R[y/10]+9xI[{R[y/10]}/2]-8xI[{R[y/10]}/3]-I[{R[y/10]}/4]+2xI[{R[y/10]}/5]-3xI[{R[y/10]}/6]+2xI[{R[y/10]}/7]+2xI[{R[y/10]}/8]-2xI[{R[y/10]}/9] (Mod 12).
Yue=10+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12).
Yim=10-R[y/10]+4xI[{R[y/10]}/2]-3xI[{R[y/10]}/3]-5xI[{R[y/10]}/4]+3xI[{R[y/10]}/5]-8xI[{R[y/10]}/6]+8xI[{R[y/10]}/7]-I[{R[y/10]}/8]+4xI[{R[y/10]}/9] (Mod 12).
Jit=7-2xR[y/10]+9xI[{R[y/10]}/4]+3xI[{R[y/10]}/8]-I[{R[y/10]}/9] (Mod 12).
Bos=8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12).
The standard formula is: Lis={8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+1, R[(SC+y)/2]=1:-1}] (Mod 12) or Lis=&C[{SC:m=0, f=1 & R[(SC+y)/2]=0}:9+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12) and Lis=&C[{SC:m=0, f=1 & R[(SC+y)/2]=1}:7+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12).
The standard formula is: Clu={8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+2, R[(SC+y)/2]=1:-2}] (Mod 12) or Clu=&C[{SC:m=0, f=1 & R[(SC+y)/2]=0}:10+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12) and Clu=&C[{SC:m=0, f=1 & R[(SC+y)/2]=1}:6+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12).
The standard formula is: Sho={8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+3, R[(SC+y)/2]=1:-3}] (Mod 12) or Sho=&C[{SC:m=0, f=1 & R[(SC+y)/2]=0}:11+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12) and Sho=&C[{SC:m=0, f=1 & R[(SC+y)/2]=1}:5+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12).
The standard formula is: Ckn={8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+4, R[(SC+y)/2]=1:-4}] (Mod 12) or Ckn=&C[{SC:m=0, f=1 & R[(SC+y)/2]=0}:R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12) and Ckn=&C[{SC:m=0, f=1 & R[(SC+y)/2]=1}:4+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12).
The standard formula is: Csu={8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+5, R[(SC+y)/2]=1:-5}] (Mod 12) or Csu=&C[{SC:m=0, f=1 & R[(SC+y)/2]=0}:1+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12) and Csu=&C[{SC:m=0, f=1 & R[(SC+y)/2]=1}:3+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12).
Lim=2+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12).
The standard formula is: Hee={8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+7, R[(SC+y)/2]=1:-7}] (Mod 12) or Hee=&C[{SC:m=0, f=1 & R[(SC+y)/2]=0}:3+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12) and Hee=&C[{SC:m=0, f=1 & R[(SC+y)/2]=1}:1+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12).
The standard formula is: Cbm={8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+8, R[(SC+y)/2]=1:-8}] (Mod 12) or Cbm=&C[{SC:m=0, f=1 & R[(SC+y)/2]=0}:4+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12) and Cbm=&C[{SC:m=0, f=1 & R[(SC+y)/2]=1}:R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12).
The standard formula is: Bai={8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+9, R[(SC+y)/2]=1:-9}] (Mod 12) or Bai=&C[{SC:m=0, f=1 & R[(SC+y)/2]=0}:5+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12) and Bai=&C[{SC:m=0, f=1 & R[(SC+y)/2]=1}:11+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12).
The standard formula is: Fbg={8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+10, R[(SC+y)/2]=1:-10}] (Mod 12) or Fbg=&C[{SC:m=0, f=1 & R[(SC+y)/2]=0}:6+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12) and Fbg=&C[{SC:m=0, f=1 & R[(SC+y)/2]=1}:10+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12).
The standard formula is: Kfu={8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+11, R[(SC+y)/2]=1:-11}] (Mod 12) or Kfu=&C[{SC:m=0, f=1 & R[(SC+y)/2]=0}:7+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12) and Kfu=&C[{SC:m=0, f=1 & R[(SC+y)/2]=1}:9+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12).
Hui=2+y (Mod 12).
Huk=10-y (Mod 12).
Chi=y (Mod 12).
Kok=2-y (Mod 12).
Que/Kar=2+y (Mod 12).
Lun=7-y (Mod 12).
Hei=1-y (Mod 12).
Yiu=7+y (Mod 12).
Hoo=9+y (Mod 12).
Psu=9-4xR[y/3] (Mod 12).
Goo=11-9xI[{R[y/12]}/3] (Mod 12).
Gwa=7+3xI[{R[y/12]}/3] (Mod 12).
Jfg=3xR[(y-1)/3]+2xI[{R[(y-1)/3]}/2] (Mod 12).
Fei=4+y+6xI[{R[y/12]+2}/3] (Mod 12).
Yei=7+y (Mod 12).
Kwy=2-3xR[y/4] (Mod 12).
Lfo=8+9xR[y/4] (Mod 12).
Cak=10-7xR[y/12] (Mod 12).
Tdo=5+3xR[y/4] (Mod 12).
Pik=6+4xR[y/12]+2xI[{R[y/12]}/3]+7xI[{R[y/12]}/4]-3xI[{R[y/12]}/6]+2xI[{R[y/12]}/7]+10xI[{R[y/12]}/9]-2xI[{R[y/12]}/11] (Mod 12).
Sui=3+6xR[y/4]-3xI[{R[y/4]}/2] (Mod 12).
Yng=2+7xR[y/12]+3xI[{R[y/12]}/2]+9xI[{R[y/12]}/3]-6xI[{R[y/12]}/4] (Mod 12).
Hoi=11-R[y/12] (Mod 12).
Por=5+R[y/12]-6x{R[y/12]-4} (Mod 12).
Aat=4-y (Mod 12).
Ysi=&C{R[y/12]=0, 1:10}&C{R[y/12]=3, 10:4}&C{R[y/12]=4, 8:1}&C{R[y/12]=5:2}&C{R[y/12]=9:9} (Mod 12).
Nik=10-9xI[{R[y/12]}/3] (Mod 12).
Hom=5+2xR[y/12]-9xI[{R[y/12]}/3]+6xI[{R[y/12]}/4]-6xI[{R[y/12]}/5]+I[{R[y/12]}/6]+6xI[{R[y/12]}/7]-6xI[{R[y/12]}/9]+2xI[{R[y/12]}/10]+8xI[{R[y/12]}/11] (Mod 12).
Yuk=5-3xR[y/4] (Mod 12).
Gak=3xI[{R[y/12]}/3] (Mod 12).
Ysi=&C{R[y/12]=0, 1:10}&C{R[y/12]=3, 10:4}&C{R[y/12]=4, 8:1}&C{R[y/12]=5:2}&C{R[y/12]=9:9} (Mod 12)¡C
Kam=9xR[y/4] (Mod 12).
Can=9+R[(y+2)/6] (Mod 12).
Bau=3+R[(y+2)/6] (Mod 12).
Chm=9xR[y/4] (Mod 12).
Pan=1+9xR[y/4] (Mod 12).
Yik=2+9xR[y/4] (Mod 12).
Sik=3+9xR[y/4] (Mod 12).
Wah=4+9xR[y/4] (Mod 12).
Cip=5+9xR[y/4] (Mod 12).
Joi=6+9xR[y/4] (Mod 12).
Tst=7+9xR[y/4] (Mod 12).
Zhi=8+9xR[y/4] (Mod 12).
Ham=9+9xR[y/4] (Mod 12).
Yut=10+9xR[y/4] (Mod 12).
Mon=11+9xR[y/4] (Mod 12).
Kim=8+y (Mod 12).
Zee=8+y (Mod 12).
Fym=9+y (Mod 12).
Sog=10+y (Mod 12).
Sok=11+y (Mod 12).
Kun=y (Mod 12).
Sfu=1+y (Mod 12).
Buy=2+y (Mod 12).
Ark=3+y (Mod 12).
Foo=4+y (Mod 12).
Sit=5+y (Mod 12).
Diu=6+y (Mod 12).
Bag=7+y (Mod 12).
Coi=S+8+y (Mod 12) or Coi=8+y+m-A[h/2] (Mod 12).
Sau=B+8+y (Mod 12) or Sau=8+y+m+A[h/2] (Mod 12).
Chn & Chn2: Chn=10-2xI[{56+R[y/60]}/10] (Mod 12) & Chn2=11-2xI[{56+R[y/60]}/10] (Mod 12) or Chn2=Chn+1 (Mod 12).
`U' is the alphabetical order of the stem of year and `Z' is the root of year. `Ego' is the `Stem' of date at birth. `SC' is the `Sex Code' of a person. The `Sex Code' of male is `M' and m=0. The `Sex Code' of female is `F' and f=1. In general, the value of `m' is assigned to be `0' and the value of `f' is `1'. The `Sex Code' of transsexual is the original sex at birth. The `Sex Code' of hermaphrodite (H), people have neutral sex (N) or genderless (N) could be either `M' or `F'. In this case, both sex codes should be used to check out which one is more accurate. `S' is the zone which marks the position of `Soul'. `B' is the zone which marks the position of `Body'. `y' is the year reckoning in a solar calender. `&C[ ]' is a conditional function of an event such that the mathematical expression after the `:' sign must be operated if the event occurs (i.e. The conditional `&C[ ]' becomes true.). `R[m/n]' is a remainder function such that it takes the remainder of `m' divided by `n'. `n' is a natural number. Natural numbers are 1,2,3,4,5,¡K¡K. Zero is not a natural number. `I[n]' is an integer function such that it takes the integral part of number `n' without rounding up the number. `Yearon=(Mod 12)' is a modulated function such that if Yearon>11 then `Yearon' becomes `Yearon-12' and if Yearon<0 then `Yearon' becomes `Yearon+12'. Thus, the value range of `Yearon=(Mod 12)' is from 0 to 11. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Example of Formula: Jwo, Jwo2, Jwo3, Jwo4 & Jwo5 |
Examples of determining whether there is a great disaster on earth in a certain year are as follows.
Example I: When y=A.D.2012, U=I=9, Z=4. When y=A.D.2012, subsitute y=2012 in the formula for year in A.D., Jwo={Jwo=3xR[y/10]+4xI[{R[y/10]}/2]-2xI[{R[y/10]}/3]+2xI[{R[y/10]}/6]-2xI[{R[y/10]}/7]+4xI[{R[y/10]}/8] (Mod 12) & Z=8+y (Mod 12)}&C[Jwo<>Z:Jwo=i]. Jwo={Jwo=3xR[2012/10]+4xI[{R[2012/10]}/2]-2xI[{R[2012/10]}/3]+2xI[{R[2012/10]}/6]-2xI[{R[2012/10]}/7]+4xI[{R[2012/10]}/8] (Mod 12) & Z=8+2012 (Mod 12)}&C[Jwo<>Z:Jwo=i]. Jwo={Jwo=3x2+4xI[2/2]-2xI[2/3]+2xI[2/6]-2xI[2/7]+4xI[2/8] (Mod 12) & Z=2020 (Mod 12)}&C[Jwo<>Z:Jwo=i]. Jwo={Jwo=6+4xI[1]-2xI[0.666]+2xI[0.333]-2xI[0.285]+4xI[0.25] (Mod 12) & Z=2020-168x12}&C[Jwo<>Z:Jwo=i]. Jwo={Jwo=6+4x1-2x0+2x0-2x0+4x0 (Mod 12) & Z=4}&C[Jwo<>Z:Jwo=i]. Jwo={Jwo=10 (Mod 12) & Z=4}&C[Jwo<>Z:Jwo=i]. Jwo={Jwo=10 & Z=4}&C[Z1<>Z:Jwo=i]. Jwo=i. The result means that this formula cannot determine whether A.D.2012 is a year of great disaster or not. The other formulae, Jwo2, Jwo3 & Jwo4, should be used to find out the result. When y=A.D.2012, subsitute y=2012 in the formula for year in A.D., Jwo2={Jwo2=2+3xR[y/10]+4xI[{R[y/10]}/2]-2xI[{R[y/10]}/3]+2xI[{R[y/10]}/6]-2xI[{R[y/10]}/7]+4xI[{R[y/10]}/8] (Mod 12) & Z=8+y (Mod 12)}&C[Jwo2<>Z:Jwo2=i]. Jwo2={Jwo2=2+3xR[2012/10]+4xI[{R[2012/10]}/2]-2xI[{R[2012/10]}/3]+2xI[{R[2012/10]}/6]-2xI[{R[2012/10]}/7]+4xI[{R[2012/10]}/8] (Mod 12) & Z=8+2012 (Mod 12)}&C[Jwo2<>Z:Jwo2=i]. Jwo2={Jwo2=2+3x2+4xI[2/2]-2xI[2/3]+2xI[2/6]-2xI[2/7]+4xI[2/8] (Mod 12) & Z=2020 (Mod 12)}&C[Jwo2<>Z:Jwo2=i]. Jwo2={Jwo2=2+6+4xI[1]-2xI[0.666]+2xI[0.333]-2xI[0.285]+4xI[0.25] (Mod 12) & Z=2020-168x12}&C[Jwo2<>Z:Jwo2=i]. Jwo2={Jwo2=8+4x1-2x0+2x0-2x0+4x0 (Mod 12) & Z=4}&C[Jwo2<>Z:Jwo2=i]. Jwo2={Jwo2=12 (Mod 12) & Z=4}&C[Jwo2<>Z:Jwo2=i]. Jwo2={Jwo2=12-12 & Z=4}&C[Jwo2<>Z:Jwo2=i]. Jwo2={Jwo2=0 & Z=4}&C[Jwo2<>Z:Jwo2=i]. Jwo2=i. The result means that this formula cannot determine whether A.D.2012 is a year of great disaster or not. The other formulae, Jwo3 & Jwo4, should be used to find out the result. When y=A.D.2012, subsitute y=2012 in the formula for year in A.D., Jwo3={Jwo3=9+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12) & Yeu=2+y (Mod 12)}&C[Jwo3<>Yeu:Jwo3=i]. Jwo3={Jwo3=9+R[2012/10]+I[{R[2012/10]}/2]-3xI[{R[2012/10]}/8] (Mod 12) & Yeu=2+2012 (Mod 12)}&C[Jwo3<>Yeu:Jwo3=i]. Jwo3={Jwo3=9+2+I[2/2]-3xI[2/8] (Mod 12) & Yeu=2014 (Mod 12)}&C[Jwo3<>Yeu:Jwo3=i]. Jwo3={Jwo3=11+I[1]-3xI[0.25] (Mod 12) & Yeu=2014-167x12}&C[Jwo3<>Yeu:Jwo3=i]. Jwo3={Jwo3=11+1-3x0 (Mod 12) & Yeu=10}&C[Jwo3<>Yeu:Jwo3=i]. Jwo3={Jwo3=12 (Mod 12) & Yeu=10}&C[Jwo3<>Yeu:Jwo3=i]. Jwo3={Jwo3=12-12 & Yeu=10}&C[Jwo3<>Yeu:Jwo3=i]. Jwo3={Jwo3=0 & Yeu=10}&C[Jwo3<>Yeu:Jwo3=i]. Jwo3=i. The result means that this formula cannot determine whether A.D.2012 is a year of great disaster or not. The last formulae, Jwo4, should be used to find out the result. When y=A.D.2012, subsitute y=2012 in the formula for year in A.D., Jwo4={Jwo4=7+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12) & Tor=2+y (Mod 12)}&C[Jwo4<>Tor:Jwo4=i]. Jwo4={Jwo4=7+R[2012/10]+I[{R[2012/10]}/2]-3xI[{R[2012/10]}/8] (Mod 12) & Tor=2+2012 (Mod 12)}&C[Jwo4<>Tor:Jwo4=i]. Jwo4={Jwo4=7+2+I[2/2]-3xI[2/8] (Mod 12) & Tor=2014 (Mod 12)}&C[Jwo4<>Tor:Jwo4=i]. Jwo4={Jwo4=9+I[1]-3xI[0.25] (Mod 12) & Tor=2014-167x12}&C[Jwo4<>Tor:Jwo4=i]. Jwo4={Jwo4=9+1-3x0 (Mod 12) & Tor=10}&C[Jwo4<>Tor:Jwo4=i]. Jwo4={Jwo4=10 (Mod 12) & Tor=10}&C[Jwo4<>Tor:Jwo4=i]. Jwo4={Jwo4=10 & Tor=10}&C[Jwo4<>Tor:Jwo4=i]. Jwo4=Tor=10. A great undersea earthquake struck near the Indonesian province of Aceh in A.D.2012. Example II: When y=A.D.1945, U=B=2, Z=9. When y=A.D.1945, subsitute y=1945 in the formula for year in A.D., Jwo={Jwo=3xR[y/10]+4xI[{R[y/10]}/2]-2xI[{R[y/10]}/3]+2xI[{R[y/10]}/6]-2xI[{R[y/10]}/7]+4xI[{R[y/10]}/8] (Mod 12) & Z=8+y (Mod 12)}&C[Jwo<>Z:Jwo=i]. Jwo={Jwo=3xR[1945/10]+4xI[{R[1945/10]}/2]-2xI[{R[1945/10]}/3]+2xI[{R[1945/10]}/6]-2xI[{R[1945/10]}/7]+4xI[{R[1945/10]}/8] (Mod 12) & Z=8+1945 (Mod 12)}&C[Jwo<>Z:Jwo=i]. Jwo={Jwo=3x5+4xI[5/2]-2xI[5/3]+2xI[5/6]-2xI[5/7]+4xI[5/8] (Mod 12) & Z=1953 (Mod 12)}&C[Jwo<>Z:Jwo=i]. Jwo={Jwo=15+4xI[2.5]-2xI[1.666]+2xI[0.833]-2xI[0.714]+4xI[0.625] (Mod 12) & Z=1953-162x12}&C[Jwo<>Z:Jwo=i]. Jwo={Jwo=15+4x2-2x1+2x0-2x0+4x0 (Mod 12) & Z=9}&C[Jwo<>Z:Jwo=i]. Jwo={Jwo=23 (Mod 12) & Z=9}&C[Jwo<>Z:Jwo=i]. Jwo={Jwo=23-12 & Z=9}&C[Jwo<>Z:Jwo=i]. Jwo={Jwo=9 & Z=9}&C[Jwo<>Z:Jwo=i]. Jwo=Z=9. This means that A.D.1945 is a year of great disaster on earth. In fact, atomic bombings were dropped to ruin Hiroshima and Nagasaki in Japan by the United States of America (U.S.A.) in A.D.1945. Example III: When y=A.D.1976, U=C=3, Z=4. When y=A.D.1976, subsitute y=1976 in the formula for year in A.D., Jwo={Jwo=3xR[y/10]+4xI[{R[y/10]}/2]-2xI[{R[y/10]}/3]+2xI[{R[y/10]}/6]-2xI[{R[y/10]}/7]+4xI[{R[y/10]}/8] (Mod 12) & Z=8+y (Mod 12)}&C[Jwo<>Z:Jwo=i]. Jwo={Jwo=3xR[1976/10]+4xI[{R[1976/10]}/2]-2xI[{R[1976/10]}/3]+2xI[{R[1976/10]}/6]-2xI[{R[1976/10]}/7]+4xI[{R[1976/10]}/8] (Mod 12) & Z=8+1976 (Mod 12)}&C[Jwo<>Z:Jwo=i]. Jwo={Jwo=3x6+4xI[6/2]-2xI[6/3]+2xI[6/6]-2xI[6/7]+4xI[6/8] (Mod 12) & Z=1984 (Mod 12)}&C[Jwo<>Z:Jwo=i]. Jwo={Jwo=18+4xI[3]-2xI[2]+2xI[1]-2xI[0.8571]+4xI[0.75] (Mod 12) & Z=1984-165x12}&C[Jwo<>Z:Jwo=i]. Jwo={Jwo=18+4x3-2x2+2x1-2x0+4x0 (Mod 12) & Z=4}&C[Jwo<>Z:Jwo=i]. Jwo={Jwo=18+12-4+2-0+0 (Mod 12) & Z=4}&C[Jwo<>Z:Jwo=i]. Jwo={Jwo=28 (Mod 12) & Z=4}&C[Jwo<>Z:Jwo=i]. Jwo={Jwo=28-12x2 & Z=4}&C[Jwo<>Z:Jwo=i]. Jwo={Jwo=4 & Z=4}&C[Jwo<>Z:Jwo=i]. Jwo=Z=4. This means that A.D.1976 is a year of great disaster on earth. In fact, a great earthquake ruined Tangshan in China in A.D.1976. Example IV: When y=A.D.2011, U=H=8, Z=3. When y=A.D.2011, subsitute y=2011 in the formula for year in A.D., Jwo={Jwo=3xR[y/10]+4xI[{R[y/10]}/2]-2xI[{R[y/10]}/3]+2xI[{R[y/10]}/6]-2xI[{R[y/10]}/7]+4xI[{R[y/10]}/8] (Mod 12) & Z=8+y (Mod 12)}&C[Jwo<>Z:Jwo=i]. Jwo={Jwo=3xR[2011/10]+4xI[{R[2011/10]}/2]-2xI[{R[2011/10]}/3]+2xI[{R[2011/10]}/6]-2xI[{R[2011/10]}/7]+4xI[{R[2011/10]}/8] (Mod 12) & Z=8+2011 (Mod 12)}&C[Jwo<>Z:Jwo=i]. Jwo={Jwo=3x1+4xI[1/2]-2xI[1/3]+2xI[1/6]-2xI[1/7]+4xI[1/8] (Mod 12) & Z=2019 (Mod 12)}&C[Jwo<>Z:Jwo=i]. Jwo={Jwo=3x1+4xI[0.5]-2xI[0.3333]+2xI[0.1666]-2xI[0.1428]+4xI[0.125] (Mod 12) & Z=2019-168x12}&C[Jwo<>Z:Jwo=i]. Jwo={Jwo=3+4x0-2x0+2x0-2x0+4x0 (Mod 12) & Z=3}&C[Jwo<>Z:Jwo=i]. Jwo={Jwo=3 (Mod 12) & Z=3}&C[Jwo<>Z:Jwo=i]. Jwo={Jwo=3 & Z=3}&C[Jwo<>Z:Jwo=i]. Jwo=Z=3. This means that A.D.2011 is a year of great disaster on earth. In fact, a great earthquake and tsunami occurred in Tohoku of Japan in A.D.2011. Example V: When y=A.D.1941, U=H=8, Z=5. When y=A.D.1941, subsitute y=1941 in the formula for year in A.D., Jwo2={Jwo2=2+3xR[y/10]+4xI[{R[y/10]}/2]-2xI[{R[y/10]}/3]+2xI[{R[y/10]}/6]-2xI[{R[y/10]}/7]+4xI[{R[y/10]}/8] (Mod 12) & Z=8+y (Mod 12)}&C[Jwo2<>Z:Jwo2=i]. Jwo2={Jwo2=2+3xR[1941/10]+4xI[{R[1941/10]}/2]-2xI[{R[1941/10]}/3]+2xI[{R[1941/10]}/6]-2xI[{R[1941/10]}/7]+4xI[{R[1941/10]}/8] (Mod 12) & Z=8+1941 (Mod 12)}&C[Jwo2<>Z:Jwo2=i]. Jwo2={Jwo2=2+3x1+4xI[1/2]-2xI[1/3]+2xI[1/6]-2xI[1/7]+4xI[1/8] (Mod 12) & Z=1949 (Mod 12)}&C[Jwo2<>Z:Jwo2=i]. Jwo2={Jwo2=2+3+4xI[0.5]-2xI[0.3333]+2xI[0.1666]-2xI[0.1428]+4xI[0.125] (Mod 12) & Z=1949-162x12}&C[Jwo2<>Z:Jwo2=i]. Jwo2={Jwo2=2+3+4x0-2x0+2x0-2x0+4x0 (Mod 12) & Z=5}&C[Jwo2<>Z:Jwo2=i]. Jwo2={Jwo2=5 (Mod 12) & Z=5}&C[Jwo2<>Z:Jwo2=i]. Jwo2={Jwo2=5 & Z=5}&C[Jwo2<>Z:Jwo2=i]. Jwo2=Z=5. This means that A.D.1941 is a year of great disaster on earth. In fact, invasion of Soviet Union (U.S.S.R) by Germany and the attack on Pearl Harbor by Japan occurred in A.D.1941. Example VI: When y=A.D.1950, U=G=7, Z=2. When y=A.D.1950, subsitute y=1950 in the formula for year in A.D., Jwo2={Jwo2=2+3xR[y/10]+4xI[{R[y/10]}/2]-2xI[{R[y/10]}/3]+2xI[{R[y/10]}/6]-2xI[{R[y/10]}/7]+4xI[{R[y/10]}/8] (Mod 12) & Z=8+y (Mod 12)}&C[Jwo2<>Z:Jwo2=i]. Jwo2={Jwo2=2+3xR[1950/10]+4xI[{R[1950/10]}/2]-2xI[{R[1950/10]}/3]+2xI[{R[1950/10]}/6]-2xI[{R[1950/10]}/7]+4xI[{R[1950/10]}/8] (Mod 12) & Z=8+1950 (Mod 12)}&C[Jwo2<>Z:Jwo2=i]. Jwo2={Jwo2=2+3x0+4xI[0/2]-2xI[0/3]+2xI[0/6]-2xI[0/7]+4xI[0/8] (Mod 12) & Z=1958 (Mod 12)}&C[Jwo2<>Z:Jwo2=i]. Jwo2={Jwo2=2+4xI[0]-2xI[0]+2xI[0]-2xI[0]+4xI[0] (Mod 12) & Z=1958-163x12}&C[Jwo2<>Z:Jwo2=i]. Jwo2={Jwo2=2+4x0-2x0+2x0-2x0+4x0 (Mod 12) & Z=2}&C[Jwo2<>Z:Jwo2=i]. Jwo2={Jwo2=2 (Mod 12) & Z=2}&C[Jwo2<>Z:Jwo2=i]. Jwo2={Jwo2=2 & Z=2}&C[Jwo2<>Z:Jwo2=i]. Jwo2=Z=2. This means that A.D.1950 is a year of great disaster on earth. In fact, Korean War occurred in A.D.1950. Example VII: When y=A.D.2004, U=A=1, Z=8. When y=A.D.2004, subsitute y=2004 in the formula for year in A.D., Jwo2={Jwo2=2+3xR[y/10]+4xI[{R[y/10]}/2]-2xI[{R[y/10]}/3]+2xI[{R[y/10]}/6]-2xI[{R[y/10]}/7]+4xI[{R[y/10]}/8] (Mod 12) & Z=8+y (Mod 12)}&C[Jwo2<>Z:Jwo2=i]. Jwo2={Jwo2=2+3xR[2004/10]+4xI[{R[2004/10]}/2]-2xI[{R[2004/10]}/3]+2xI[{R[2004/10]}/6]-2xI[{R[2004/10]}/7]+4xI[{R[2004/10]}/8] (Mod 12) & Z=8+2004 (Mod 12)}&C[Jwo2<>Z:Jwo2=i]. Jwo2={Jwo2=2+3x4+4xI[4/2]-2xI[4/3]+2xI[4/6]-2xI[4/7]+4xI[4/8] (Mod 12) & Z=2012 (Mod 12)}&C[Jwo2<>Z:Jwo2=i]. Jwo2={Jwo2=2+12+4xI[2]-2xI[1.3333]+2xI[0.6666]-2xI[0.5714]+4xI[0.5] (Mod 12) & Z=2012-167x12}&C[Jwo2<>Z:Jwo2=i]. Jwo2={Jwo2=14+4x2-2x1+2x0-2x0+4x0 (Mod 12) & Z=8}&C[Jwo2<>Z:Jwo2=i]. Jwo2={Jwo2=20 (Mod 12) & Z=8}&C[Jwo2<>Z:Jwo2=i]. Jwo2={Jwo2=20-12 & Z=8}&C[Jwo2<>Z:Jwo2=i]. Jwo2={Jwo2=8 & Z=8}&C[Jwo2<>Z:Jwo2=i]. Jwo2=Z=8. This means that A.D.2004 is a year of great disaster on earth. In fact, Indian Ocean earthquake and tsunami occurred in A.D.2004. Example VIII: When y=A.D.79, U=F=6, Z=3. When y=A.D.79, subsitute y=79 in the formula for year in A.D., Jwo5={Jwo5=7+y (Mod 10) & Z=8+y (Mod 12)}&C[(Jwo5<>6,8 & Z<>2,4,5,6,8,9,11):Jwo5=i]. Jwo5={Jwo5=7+79 (Mod 10) & Z=8+79 (Mod 12)}&C[(Jwo5<>6,8 & Z<>2,4,5,6,8,9,11):Jwo5 =i]. Jwo5={Jwo5=86 (Mod 10) & Z=87 (Mod 12)}&C[(Jwo5<>6,8 & Z<>2,4,5,6,8,9,11):Jwo5=i]. Jwo5={Jwo5=(86-8x10) & Z=87-7x12}&C[(Jwo5<>6,8 & Z<>2,4,5,6,8,9,11):Jwo5=i]. Jwo5={Jwo5=6 & Z=3}&C[(Jwo5<>6,8 & Z<>2,4,5,6,8,9,11):Jwo5=i]. Jwo5=6 & Z=3. Since `Jwo5=6' in the conditional of `&C[Jwo5<>6,8 & Z<>2,4,5,6,8,9,11]' is false, `Jwo5' is not equalt to `i'. This means that great natural disasters or war occur on earth are not imaginary. A.D.79 is a year of great natural disasters or war. In fact, eruption of Mount Vesuvius in Italy buried the town of Pompeii in A.D.79 and all ihabitants died. Example IX: When y=A.D.2020, U=I=7, Z=0. When y=A.D.2020, subsitute y=2020 in the formula for year in A.D., Jwo={Jwo=3xR[y/10]+4xI[{R[y/10]}/2]-2xI[{R[y/10]}/3]+2xI[{R[y/10]}/6]-2xI[{R[y/10]}/7]+4xI[{R[y/10]}/8] (Mod 12) & Z=8+y (Mod 12)}&C[Jwo<>Z:Jwo=i]. Jwo={Jwo=3xR[2020/10]+4xI[{R[2020/10]}/2]-2xI[{R[2020/10]}/3]+2xI[{R[2020/10]}/6]-2xI[{R[2020/10]}/7]+4xI[{R[2020/10]}/8] (Mod 12) & Z=8+2020 (Mod 12)}&C[Jwo<>Z:Jwo=i]. Jwo={Jwo=3x0+4xI[0/2]-2xI[0/3]+2xI[0/6]-2xI[0/7]+4xI[0/8] (Mod 12) & Z=2028 (Mod 12)}&C[Jwo<>Z:Jwo=i]. Jwo={Jwo=0+4xI[0]-2xI[0]+2xI[0]-2xI[0]+4xI[0] (Mod 12) & Z=2028-169x12}&C[Jwo<>Z:Jwo=i]. Jwo={Jwo=0+4x0-2x0+2x0-2x0+4x0 (Mod 12) & Z=0}&C[Jwo<>Z:Jwo=i]. Jwo={Jwo=0 (Mod 12) & Z=0}&C[Jwo<>Z:Jwo=i]. Jwo={Jwo=0 & Z=0}&C[Jwo<>Z:Jwo=i]. Jwo=Z=0. Coronal virus (COVID-19) became pandemic in A.D.2020 and killed more than one million people. Example X: When y=264B.C., U=D=4, Z=9. When y=264B.C., subsitute y=264 in the formula for year in B.C., Jwo={Jwo=3-3xR[y/10]+8xI[{R[y/10]}/2]+2xI[{R[y/10]}/3]-4xI[{R[y/10]}/4]+2xI[{R[y/10]}/5]-2xI[{R[y/10]}/6]+4xI[{R[y/10]}/8] (Mod 12) & Z=9-y (Mod 12)}&C[Jwo<>Z:Jwo=i]. Jwo={Jwo=3-3xR[264/10]+8xI[{R[264/10]}/2]+2xI[{R[264/10]}/3]-4xI[{R[264/10]}/4]+2xI[{R[264/10]}/5]-2xI[{R[264/10]}/6]+4xI[{R[264/10]}/8] (Mod 12) & Z=9-264 (Mod 12)}&C[Jwo<>Z:Jwo=i]. Jwo={Jwo=3-3x4+8xI[4/2]+2xI[4/3]-4xI[4/4]+2xI[4/5]-2xI[4/6]+4xI[4/8] (Mod 12) & Z= -255 (Mod 12)}&C[Jwo<>Z:Jwo=i]. Jwo={Jwo= -9+8xI[2]+2xI[1.3333]-4xI[1]+2xI[0.8]-2xI[0.6666]+4xI[0.5] (Mod 12) & Z=22x12-255}&C[Jwo<>Z:Jwo=i]. Jwo={Jwo= -9+8x2+2x1-4x1+2x0-2x0+4x0 (Mod 12) & Z=9}&C[Jwo<>Z:Jwo=i]. Jwo={Jwo=5 (Mod 12) & Z=9}&C[Jwo<>Z:Jwo=i]. Jwo={Jwo=5 & Z=9}&C[Jwo<>Z:Jwo=i]. Jwo=i. The result means that this formula cannot determine whether 264B.C is a year of great disaster or not. The other formulae, Jwo2, Jwo3, Jwo4 & Jwo5, should be used to find out the result. When y=264B.C., subsitute y=264 in the formula for year in B.C., Jwo2={Jwo2=5-3xR[y/10]+8xI[{R[y/10]}/2]+2xI[{R[y/10]}/3]-4xI[{R[y/10]}/4]+2xI[{R[y/10]}/5]-2xI[{R[y/10]}/6]-8xI[{R[y/10]}/8] (Mod 12) & Z=9-y (Mod 12)}&C[Jwo2<>Z:Jwo2=i]. Jwo2={Jwo2=5-3xR[264/10]+8xI[{R[264/10]}/2]+2xI[{R[264/10]}/3]-4xI[{R[264/10]}/4]+2xI[{R[264/10]}/5]-2xI[{R[264/10]}/6]-8xI[{R[264/10]}/8] (Mod 12) & Z=9-264 (Mod 12)}&C[Jwo2<>Z:Jwo2=i]. Jwo2={Jwo2=5-3x4+8xI[4/2]+2xI[4/3]-4xI[4/4]+2xI[4/5]-2xI[4/6]+4xI[4/8] (Mod 12) & Z= -255 (Mod 12)}&C[Jwo2<>Z:Jwo=i]. Jwo2={Jwo2= -7+8xI[2]+2xI[1.3333]-4xI[1]+2xI[0.8]-2xI[0.6666]+4xI[0.5] (Mod 12) & Z=22x12-255}&C[Jwo2<>Z:Jwo=i]. Jwo2={Jwo2= -7+8x2+2x1-4x1+2x0-2x0+4x0 (Mod 12) & Z=9}&C[Jwo2<>Z:Jwo=i]. Jwo2={Jwo2=7 (Mod 12) & Z=9}&C[Jwo2<>Z:Jwo=i]. Jwo2={Jwo2=7 & Z=9}&C[Jwo2<>Z:Jwo=i]. Jwo2=i. The result means that this formula cannot determine whether 264B.C is a year of great disaster or not. The other formulae, Jwo3, Jwo4 & Jwo5, should be used to find out the result. When y=264B.C., subsitute y=264 in the formula for year in B.C., Jwo3={Jwo3=10-R[y/10]-I[{R[y/10]}/2]+3xI[{R[y/10]}/4]+9xI[{R[y/10]}/8] (Mod 12) & Yeu=3-y (Mod 12)}&C[Jwo3<>Yeu:Jwo3=i]. Jwo3={Jwo3=10-R[264/10]-I[{R[264/10]}/2]+3xI[{R[264/10]}/4]+9xI[{R[264/10]}/8] (Mod 12) & Yeu=3-264 (Mod 12)}&C[Jwo3<>Yeu:Jwo3=i]. Jwo3={Jwo3=10-4-I[4/2]+3xI[4/4]+9xI[4/8] (Mod 12) & Yeu= -261 (Mod 12)}&C[Jwo3<>Yeu:Jwo3=i]. Jwo3={Jwo3=6-I[2]+3xI[1]+9xI[0.5] (Mod 12) & Yeu=22x12-261}&C[Jwo3<>Yeu:Jwo3=i]. Jwo3={Jwo3=6-2+3x2+9x0 (Mod 12) & Yeu=3}&C[Jwo3<>Yeu:Jwo3=i]. Jwo3={Jwo3=10 (Mod 12) & Yeu=3}&C[Jwo3<>Yeu:Jwo3=i]. Jwo3={Jwo3=10 & Yeu=3}&C[Jwo3<>Yeu:Jwo3=i]. Jwo3=i. The result means that this formula cannot determine whether 264B.C is a year of great disaster or not. The other formulae, Jwo4 & Jwo5, should be used to find out the result. When y=264B.C., subsitute y=264 in the formula for year in B.C., Jwo4={Jwo4=8-R[y/10]-I[{R[y/10]}/2]+3xI[{R[y/10]}/4]+9xI[{R[y/10]}/8] (Mod 12) & Tor=3-y (Mod 12)}&C[Jwo4<>Tor:Jwo4=i]. Jwo4={Jwo4=8-R[264/10]-I[{R[264/10]}/2]+3xI[{R[264/10]}/4]+9xI[{R[264/10]}/8] (Mod 12) & Tor=3-264 (Mod 12)}&C[Jwo4<>Tor:Jwo4=i]. Jwo4={Jwo4=8-4-I[4/2]+3xI[4/4]+9xI[4/8] (Mod 12) & Tor= -261 (Mod 12)}&C[Jwo4<>Tor:Jwo4=i]. Jwo4={Jwo4=4-I[2]+3xI[1]+9xI[0.5] (Mod 12) & Tor=22x12-261}&C[Jwo4<>Tor:Jwo4=i]. Jwo4={Jwo4=4-2+3x1+9x0 (Mod 12) & Tor=3}&C[Jwo4<>Tor:Jwo4=i]. Jwo4={Jwo4=5 (Mod 12) & Tor=3}&C[Jwo4<>Tor:Jwo4=i]. Jwo4={Jwo4=5 & Tor=3}&C[Jwo4<>Tor:Jwo4=i]. Jwo4=i. The result means that this formula cannot determine whether 264B.C is a year of great disaster or not. The last formulae, Jwo5, should be used to find out the result. When y=264B.C., subsitute y=264 in the formula for year in B.C., Jwo5={Jwo5=8-y (Mod 10) & Z=9-y (Mod 12)}&C[(Jwo5<>2,10 & Z<>2,4,5,6,8,9,11):Jwo5=i]. Jwo5={Jwo5=8-264 (Mod 10) & Z=9-264 (Mod 12)}&C[(Jwo5<>2,10 & Z<>2,4,5,6,8,9,11):Jwo5=i]. Jwo5={Jwo5= -256 (Mod 10) & Z= -255 (Mod 12)}&C[(Jwo5<>2,10 & Z<>2,4,5,6,8,9,11):Jwo5=i]. Jwo5={Jwo5=26x10-256 & Z=22x12-255}&C[(Jwo5<>2,10 & Z<>2,4,5,6,8,9,11):Jwo5=i]. Jwo5={Jwo5=4 & Z=9}&C[(Jwo5<>2,10 & Z<>2,4,5,6,8,9,11):Jwo5=i]. Jwo5=4 & Z=9. Since `Z=9' in the conditional of `&C[Jwo5<>2,10 & Z<>2,4,5,6,8,9,11]' is false, `Jwo5' is not equalt to `i'. This means that great natural disasters or war occur on earth are not imaginary. 264B.C. is a year of great natural disasters or war. In fact, Carthage and Rome went to the First Punic War in 264B.C. Example XI: When y=218B.C., U=J=10, Z=7. When y=218B.C., subsitute y=218 in the formula for year in B.C., Jwo3={Jwo3=10-R[y/10]-I[{R[y/10]}/2]+3xI[{R[y/10]}/4]+9xI[{R[y/10]}/8] (Mod 12) & Yeu=3-y (Mod 12)}&C[Jwo3<>Yeu:Jwo3=i]. Jwo3={Jwo3=10-R[218/10]-I[{R[218/10]}/2]+3xI[{R[218/10]}/4]+9xI[{R[218/10]}/8] (Mod 12) & Yeu=3-218 (Mod 12)}&C[Jwo3<>Yeu:Jwo3=i]. Jwo3={Jwo3=10-8-I[8/2]+3xI[8/4]+9xI[8/8] (Mod 12) & Yeu= -215 (Mod 12)}&C[Jwo3<>Yeu:Jwo3=i]. Jwo3={Jwo3=2-I[4]+3xI[2]+9xI[1] (Mod 12) & Yeu=18x12-215}&C[Jwo3<>Yeu:Jwo3=i]. Jwo3={Jwo3=2-4+3x2+9x1 (Mod 12) & Yeu=1}&C[Jwo3<>Yeu:Jwo3=i]. Jwo3={Jwo3=13 (Mod 12) & Yeu=1}&C[Jwo3<>Yeu:Jwo3=i]. Jwo3={Jwo3=13-12 & Yeu=1}&C[Jwo3<>Yeu:Jwo3=i]. Jwo3={Jwo3=1 & Yeu=1}&C[Jwo3<>Yeu:Jwo3=i]. Jwo3=Yeu=1. Carthage and Rome went to the Second Punic War in 218B.C. Example XII: When y=149B.C., U=I=9, Z=4. When y=149B.C., subsitute y=149 in the formula for year in B.C., Jwo4={Jwo4=8-R[y/10]-I[{R[y/10]}/2]+3xI[{R[y/10]}/4]+9xI[{R[y/10]}/8] (Mod 12) & Tor=3-y (Mod 12)}&C[Jwo4<>Tor:Jwo4=i]. Jwo4={Jwo4=8-R[149/10]-I[{R[149/10]}/2]+3xI[{R[149/10]}/4]+9xI[{R[149/10]}/8] (Mod 12) & Tor=3-149 (Mod 12)}&C[Jwo4<>Tor:Jwo4=i]. Jwo4={Jwo4=8-9-I[9/2]+3xI[9/4]+9xI[9/8] (Mod 12) & Tor= -146 (Mod 12)}&C[Jwo4<>Tor:Jwo4=i]. Jwo4={Jwo4= -1-I[4.5]+3xI[2.25]+9xI[1.125] (Mod 12) & Tor=13x12-146}&C[Jwo4<>Tor:Jwo4=i]. Jwo4={Jwo4= -1-4+3x2+9x1 (Mod 12) & Tor=10}&C[Jwo4<>Tor:Jwo4=i]. Jwo4={Jwo4=10 (Mod 12) & Tor=10}&C[Jwo4<>Tor:Jwo4=i]. Jwo4={Jwo4=10 & Tor=10}&C[Jwo4<>Tor:Jwo4=i]. Jwo4=Tor=10. Carthage and Rome went to the Third Punic War in 149B.C. Example of Formula: Ff | If y=2012, then R[y/10]=2. Apply the Yearon Formula for year `y' in A.D., `Ff=Chzon/Houron/Monthon &C{R=R[y/10]: R=0:Fuo, R=1:Kk, R=2:Fu, R=3:Ym, R=4:Mo, R=5:Chz, R=6:Ch, R=7:Ke, R=8:Bu, R=9:Le} or Ff=Chzon/Houron/Monthon &C[U=1:Mo, U=2:Chz, U=3:Ch, U=4:Ke, U=5:Bu, U=6:Le, U=7:Fuo, U=8:Kk, U=9:Fu, U=10:Ym]'. Ff=Fu. | Example of Formula: Fk | If y=2012, then R[y/10]=2. Apply the Yearon Formula for year `y' in A.D., `Fk=Chzon &C{R=R[y/10]: R=0:Mo, R=1:Ta, R=2:Chz, R=3:Ku, R=4:Pr, R=5:Le, R=6:Ke, R=7:Tg, R=8:Ym, R=9:Tm} or Fk=Chzon &C[U=1:Pr, U=2:Le, U=3:Ke, U=4:Tg, U=5:Ym, U=6:Tm, U=7:Mo, U=8:Ta, U=9:Chz, U=10:Ku]'. Fk=Chz. | Example of Formula: Fl | If y=2012, then R[y/10]=2. Apply the Yearon Formula for year `y' in A.D., `Fl=Chzon &C{R=R[y/10]: R=0:Ta, R=1:Ku, R=2:Le, R=3:Pr, R=4:Lm, R=5:Ke, R=6:Tg, R=7:Ym, R=8:Tm, R=9:Mo} or Fl=Chzon &C[U=1:Lm, U=2:Ke, U=3:Tg, U=4:Ym, U=5:Tm, U=6:Mo, U=7:Ta, U=8:Ku, U=9:Le, U=10:Pr]'. Fl=Le. | Example of Formula: Fj | If y=2012, then R[y/10]=2. Apply the Yearon Formula for year `y' in A.D., `Fj=Chzon/Houron &C{R=R[y/10]: R=0:Tg, R=1:Ch, R=2:Mo, R=3:Tm, R=4:Ta, R=5:Ym, R=6:Lm, R=7:Ku, R=8:Ke, R=9:Kk} or Fj=Chzon/Houron &C[U=1:Ta, U=2:Ym, U=3:Lm, U=4:Ku, U=5:Ke, U=6:Kk, U=7:Tg, U=8:Ch, U=9:Mo, U=10:Tm]'. Fj=Mo. | Example of Formula: Inc | If Ego=5, find `y' A.D. in Gregorian calendar such that the person meets yearon `Inc'. Apply the Yearon Formula for year `y' in A.D., `Inc: R[y/10]=(Ego+5)&C{R[Ego/2]=0:-2} (Mod 10)'. Inc: R[y/10]=(5+5)&C{R[5/2]=0:-2} (Mod 10). Inc: R[y/10]=10&C{1=0:-2} (Mod 10). Inc: R[y/10]=10 (Mod 10). Inc: R[y/10]=10. Since R[y/10]=10, `y' can be any year in A.D. with the last digit as 0, e.g. 1990, 2000, 2010, and so on. That is, a person with Ego=5 always comes across with yearon `Inc' in the years with the last digit as 0. | Example of Formula: Win | If Ego=5, find `y' A.D. in Gregorian calendar such that the person meets yearon `Win'. Apply the Yearon Formula for year `y' in A.D., `Win: R[y/10]=Ego+4 (Mod 10)'. Win: R[y/10]=5+4 (Mod 10). Win: R[y/10]=9 (Mod 10). Win: R[y/10]=9. Since Win=9 and R[y/10]=9, `y' can be any year in A.D. with the last digit as 9, e.g. 1989, 1999, 2009, and so on. That is, a person with Ego=5 always comes across with yearon `Win' in the years with the last digit as 9. | Example of Formula: Los | If Ego=5, find `y' A.D. in Gregorian calendar such that the person meets yearon `Los'. Apply the Yearon Formula for year `y' in A.D., `Los: R[y/10]=(Ego-1)&C{R[Ego/2]=1:+2} (Mod 10)'. Los: R[y/10]=(5-1)&C{R[5/2]=1:+2} (Mod 10. Los: R[y/10]=4&C{1=1:+2} (Mod 10). Los: R[y/10]=4+2 (Mod 10). Los: R[y/10]=6 (Mod 10). Los: R[y/10]=6. Since R[y/10]=6, `y' can be any year in A.D. with the last digit as 6, e.g. 1986, 1996, 2006, and so on. That is, a person with Ego=5 always comes across with yearon `Los' in the years with the last digit as 6. | Example of Formula: Cfu | If y=2012, then R[y/10]=2. Apply the Yearon Formula for year `y' in A.D., `Cfu=7+3xI[{R[y/10]}/2]-3xI[{R[y/10]}/4]-9xI[{R[y/10]}/8] (Mod 12)'. Cfu=7+3xI[{R[2012/10]}/2]-3xI[{R[2012/10]}/4]-9xI[{R[2012/10]}/8] (Mod 12)'. Cfu=7+3xI[2/2]-3xI[2/4]-9xI[2/8] (Mod 12). Cfu=7+3xI[1]-3xI[0.5]-9xI[0.25] (Mod 12). Cfu=7+3x1-3x0-9x0 (Mod 12). Cfu=10 (Mod 12). Cfu=10. | Example of Formula: Luk | If y=2012, then R[y/10]=2. Apply the Yearon Formula for year `y' in A.D., `Luk=8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12)'. Luk=8+R[2012/10]+I[{R[2012/10]}/2]-3xI[{R[2012/10]}/8] (Mod 12). Luk=8+2+I[2/2]-3xI[2/8] (Mod 12). Luk=8+2+I[1]-3xI[0.25] (Mod 12). Luk=10+1-3x0 (Mod 12). Luk=11 (Mod 12). Luk=11. | Example of Formula: Yeu | If y=2012, then R[y/10]=2. Apply the Yearon Formula for year `y' in A.D., `Yeu=9+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12)'. Yeu=9+R[2012/10]+I[{R[2012/10]}/2]-3xI[{R[2012/10]}/8] (Mod 12). Yeu=9+2+I[2/2]-3xI[2/8] (Mod 12). Yeu=11+I[1]-3xI[0.25] (Mod 12). Yeu=11+1-3x0 (Mod 12). Yeu=12 (Mod 12). Yeu=12-12. Yeu=0. | Example of Formula: Tor | If y=2012, then R[y/10]=2. Apply the Yearon Formula for year `y' in A.D., `Tor=7+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12)'. Tor=7+R[2012/10]+I[{R[2012/10]}/2]-3xI[{R[2012/10]}/8] (Mod 12). Tor=7+2+I[2/2]-3xI[2/8] (Mod 12). Tor=9+I[1]-3xI[0.25] (Mod 12). Tor=9+1-3x0 (Mod 12). Tor=10 (Mod 12). Tor=10. | Example of Interchange `Yeu' & `Tor' Formula: Yeu | `Yeu' & `Tor' are interchangeable in pairs. If y=2012, then R[y/10]=2. Apply the Yearon Formula for year `y' in A.D., `Yeu=9-R[y/10]+5xI[R[y/10]/2]-3xI[R[y/10]/8] (Mod 12)'. Yeu=9-R[2012/10]+5xI[R[2012/10]/2]-3xI[R[2012/10]/8] (Mod 12). Yeu=9-2+5xI[2/2]-3xI[2/8] (Mod 12). Yeu=7+5xI[1]-3xI[0.25] (Mod 12). Yeu=7+5x1-3x0 (Mod 12). Yeu=12 (Mod 12). Yeu=12-12. Yeu=0. [Remarks: `Yeu' and `Tor' must be interchanged in pairs. The values of `Yeu' and `Tor' for even solar year `y' are same as the original pairs.] | Example of Interchange `Yeu' & `Tor' Formula: Tor | `Yeu' & `Tor' are interchangeable in pairs. If y=2012, then R[y/10]=2. Apply the Yearon Formula for year `y' in A.D., `Tor=7+3xR[y/10]-3xI[R[y/10]/2]-3xI[R[y/10]/8] (Mod 12)'. Tor=7+3xR[2012/10]-3xI[R[2012/10]/2]-3xI[R[2012/10]/8] (Mod 12). Tor=7+3x2-3xI[2/2]-3xI[2/8] (Mod 12). Tor=13-3xI[1]-3xI[0.25] (Mod 12). Tor=13-3x1-3x0 (Mod 12). Tor=10 (Mod 12). Tor=10. [Remarks: `Yeu' and `Tor' must be interchanged in pairs. The values of `Yeu' and `Tor' for even solar year `y' are same as the original pairs.] | Example of Formula: Fui | If y=2012, then R[y/10]=2. Apply the Yearon Formula for year `y' in A.D., `Fui=1+R[y/10]+I[{R[y/10]}/3]+I[{R[y/10]}/4]-I[{R[y/10]}/6]+I[{R[y/10]}/7]-3xI[{R[y/10]}/9] (Mod 12)'. Fui=1+R[2012/10]+I[{R[2012/10]}/3]+I[{R[2012/10]}/4]-I[{R[2012/10]}/6]+I[{R[2012/10]}/7]-3xI[{R[2012/10]}/9] (Mod 12). Fui=1+2+I[2/3]+I[2/4]-I[2/6]+I[2/7]-3xI[2/9] (Mod 12). Fui=3+I[0.666]+I[0.5]-I[0.333]+I[0.285]-3xI[0.222] (Mod 12). Fui=3+0+0-0+0-3x0 (Mod 12). Fui=3 (Mod 12). Fui=3. | Example of Formula: Eut | If y=2012, then R[y/10]=2. Apply the Yearon Formula for year `y' in A.D., `Eut=7-R[y/10]-I[{R[y/10]}/3]-I[{R[y/10]}/4]+I[{R[y/10]}/6]-I[{R[y/10]}/7]+3xI[{R[y/10]}/9] (Mod 12)'. Eut=7-R[2012/10]-I[{R[2012/10]}/3]-I[{R[2012/10]}/4]+I[{R[2012/10]}/6]-I[{R[2012/10]}/7]+3xI[{R[2012/10]}/9] (Mod 12). Eut=7-2-I[2/3]-I[2/4]+I[2/6]-I[2/7]+3xI[2/9] (Mod 12). Eut=5-I[0.666]-I[0.5]+I[0.333]-I[0.285]+3xI[0.222] (Mod 12). Eut=5-0-0+0-0+3x0 (Mod 12). Eut=5 (Mod 12). Eut=5. | Example of Formula: Chw | If y=2012, then R[y/10]=2. Apply the Yearon Formula for year `y' in A.D., `Chw=11+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12)'. Chw=11+R[2012/10]+I[{R[2012/10]}/2]-3xI[{R[2012/10]}/8] (Mod 12). Chw=11+2+I[2/2]-3xI[2/8] (Mod 12). Chw=13+I[1]-3xI[0.25] (Mod 12). Chw=13+1-3x0 (Mod 12). Chw=14 (Mod 12). Chw=14-12. Chw=2. | Example of Formula: Kkw | If y=2012, then R[y/10]=2. Apply the Yearon Formula for year `y' in A.D., `Kkw=3-R[y/10]-I[{R[y/10]}/2]+3xI[{R[y/10]}/8] (Mod 12)'. Kkw=3-R[2012/10]-I[{R[2012/10]}/2]+3xI[{R[2012/10]}/8] (Mod 12). Kkw=3-2-I[2/2]+3xI[2/8] (Mod 12). Kkw=1-I[1]+3xI[0.25] (Mod 12). Kkw=1-1+3x0 (Mod 12). Kkw=1-1+3x0 (Mod 12). Kkw=0 (Mod 12). Kkw=0. | Example of Formula: Fkw | If y=2012, then R[y/10]=2. Apply the Yearon Formula for year `y' in A.D., `Fkw=4+R[y/10]-2xI[{R[y/10]}/2]-2xI[{R[y/10]}/3]-2xI[{R[y/10]}/5]+2xI[{R[y/10]}/6]+8xI[{R[y/10]}/7]+2xI[{R[y/10]}/10] (Mod 12)'. Fkw=4+R[2012/10]-2xI[{R[2012/10]}/2]-2xI[{R[2012/10]}/3]-2xI[{R[2012/10]}/5]+2xI[{R[2012/10]}/6]+8xI[{R[2012/10]}/7]+2xI[{R[2012/10]}/10] (Mod 12). Fkw=4+2-2xI[2/2]-2xI[2/3]-2xI[2/5]+2xI[2/6]+8xI[2/7]+2xI[2/10] (Mod 12). Fkw=4+2-2xI[1]-2xI[0.666]-2xI[0.4]+2xI[0.333]+8xI[0.285]+2xI[0.2] (Mod 12). Fkw=4+2-2x1-2x0-2x0+2x0+8x0+2x0 (Mod 12). Fkw=4 (Mod 12). Fkw=4. | Example of Formula: Gkw | If y=2012, then R[y/10]=2. Apply the Yearon Formula for year `y' in A.D., `Gkw={2+R[y/10]+I[{R[y/10]}/2]+2xI[{R[y/10]}/3]-10xI[{R[y/10]}/4]+5xI[{R[y/10]}/5]-I[{R[y/10]}/6]-7xI[{R[y/10]}/7]}&C[R[y/10]=8:4,10]&C[R[y/10]=9:1,7] (Mod 12)'. Gkw={2+R[2012/10]+I[{R[2012/10]}/2]+2xI[{R[2012/10]}/3]-10xI[{R[2012/10]}/4]+5xI[{R[2012/10]}/5]-I[{R[2012/10]}/6]-7xI[{R[2012/10]}/7]}&C[R[2012/10]=8:4,10]&C[R[2012/10]=9:1,7] (Mod 12). Gkw={2+2+I[2/2]+2xI[2/3]-10xI[2/4]+5xI[2/5]-I[2/6]-7xI[2/7]}&C[2=8:4,10]&C[2=9:1,7] (Mod 12). Gkw=4+I[1]+2xI[0.666]-10xI[0.5]+5xI[0.4]-I[0.333]-7xI[0.285] (Mod 12). Gkw=4+1+2x0-10x0+5x0-0-7x0 (Mod 12). Gkw=5 (Mod 12). Gkw=5. | Example of Formula: Jkw | If y=2012, then R[y/10]=2 and R[y/2]=0. Apply the Yearon Formula for year `y' in A.D., `Jkw={11-9xR[y/2]}&C{R[y/10]>3:5+3xR[y/2]} (Mod 12)'. Jkw={11-9xR[2012/2]}&C{R[2012/10]>3:5+3xR[2012/2]} (Mod 12). Jkw={11-9x0}&C{2>3:5+3x0} (Mod 12). Jkw=11&C{2>3:8} (Mod 12). Jkw=11&C{2>3:8} (Mod 12). Jkw=11 (Mod 12). Jkw=11. | Example of Formula: Tyh | If y=2012, then R[y/10]=2. Apply the Yearon Formula for year `y' in A.D., `Tyh=6-R[y/10]+5xI[R[y/10]/2] (Mod 12)'. Tyh=6-R[2012/10]+5xI[R[2012/10]/2] (Mod 12). Tyh=6-2+5xI[2/2] (Mod 12). Tyh=4+5xI[1] (Mod 12). Tyh=4+5x1 (Mod 12). Tyh=9 (Mod 12). Tyh=9. | Example of Formula: Gun | If y=2012, then R[y/10]=2. Apply the Yearon Formula for year `y' in A.D., `Gun=11-2xR[y/10]+3xI[{R[y/10]}/2]-2xI[{R[y/10]}/3]-I[{R[y/10]}/5]+2xI[{R[y/10]}/6]-I[{R[y/10]}/7]-2xI[{R[y/10]}/9] (Mod 12)'. Gun=11-2xR[2012/10]+3xI[{R[2012/10]}/2]-2xI[{R[2012/10]}/3]-I[{R[2012/10]}/5]+2xI[{R[2012/10]}/6]-I[{R[2012/10]}/7]-2xI[{R[2012/10]}/9] (Mod 12). Gun=11-2x2+3xI[2/2]-2xI[2/3]-I[2/5]+2xI[2/6]-I[2/7]-2xI[2/9] (Mod 12). Gun=11-4+3xI[1]-2xI[0.666]-I[0.4]+2xI[0.333]-I[0.285]-2xI[0.222] (Mod 12). Gun=7+3x1-2x0-0+2x0-0-2x0 (Mod 12). Gun=7+3 (Mod 12). Gun=10 (Mod 12). Gun=10. | Example of Formula: Fuk | If y=2012, then R[y/10]=2. Apply the Yearon Formula for year `y' in A.D., `Fuk=6-R[y/10]+2xI[{R[y/10]}/2]+3xI[{R[y/10]}/4]+3xI[{R[y/10]}/6]-4xI[{R[y/10]}/8]-8xI[{R[y/10]}/9] (Mod 12)'. Fuk=6-R[2012/10]+2xI[{R[2012/10]}/2]+3xI[{R[2012/10]}/4]+3xI[{R[2012/10]}/6]-4xI[{R[2012/10]}/8]-8xI[{R[2012/10]}/9] (Mod 12). Fuk=6-2+2xI[2/2]+3xI[2/4]+3xI[2/6]-4xI[2/8]-8xI[2/9] (Mod 12). Fuk=4+2xI[1]+3xI[0.5]+3xI[0.333]-4xI[0.25]-8xI[0.222] (Mod 12). Fuk=4+2x1+3x0+3x0-4x0-8x0 (Mod 12). Fuk=4+2 (Mod 12). Fuk=6 (Mod 12). Fuk=6. | Example of Formula: Tyn | If y=2012, then R[y/10]=2. Apply the Yearon Formula for year `y' in A.D., `Tyn=11-3xR[y/10]+I[{R[y/10]}/2]+2xI[{R[y/10]}/3]-I[{R[y/10]}/4]+9xI[{R[y/10]}/6]+I[{R[y/10]}/7]+2xI[{R[y/10]}/8]-2xI[{R[y/10]}/9] (Mod 12)'. Tyn=11-3xR[2012/10]+I[{R[2012/10]}/2]+2xI[{R[2012/10]}/3]-I[{R[2012/10]}/4]+9xI[{R[2012/10]}/6]+I[{R[2012/10]}/7]+2xI[{R[2012/10]}/8]-2xI[{R[2012/10]}/9] (Mod 12). Tyn=11-3x2+I[2/2]+2xI[2/3]-I[2/4]+9xI[2/6]+I[2/7]+2xI[2/8]-2xI[2/9] (Mod 12). Tyn=5+I[1]+2xI[0.666]-I[0.5]+9xI[0.333]+I[0.281]+2xI[0.25]-2xI[0.222] (Mod 12). Tyn=5+1+2x0-0+9x0+0+2x0-2x0 (Mod 12). Tyn=6 (Mod 12). Tyn=6. | Example of Formula: Hok | If y=2012, then R[y/10]=2. Apply the Yearon Formula for year `y' in A.D., `Hok=5-5xR[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12)'. Hok=5-5xR[2012/10]+I[{R[2012/10]}/2]-3xI[{R[2012/10]}/8] (Mod 12). Hok=5-5x2+I[2/2]-3xI[2/8] (Mod 12). Hok=5-10+I[1]-3xI[0.25] (Mod 12). Hok= -5+1-3x0 (Mod 12). Hok= -4 (Mod 12). Hok=12-4. Hok=8. | Example of Formula: Chu | If y=2012, then R[y/10]=2. Apply the Yearon Formula for year `y' in A.D., `Chu=2+4xR[y/10]-I[{R[y/10]}/2]-2xI[{R[y/10]}/3]+3xI[{R[y/10]}/4]-3xI[{R[y/10]}/5]+5xI[{R[y/10]}/6]+I[{R[y/10]}/7]-3xI[{R[y/10]}/8]-2xI[{R[y/10]}/9] (Mod 12)'. Chu=2+4xR[2012/10]-I[{R[2012/10]}/2]-2xI[{R[2012/10]}/3]+3xI[{R[2012/10]}/4]-3xI[{R[2012/10]}/5]+5xI[{R[2012/10]}/6]+I[{R[2012/10]}/7]-3xI[{R[2012/10]}/8]-2xI[{R[2012/10]}/9] (Mod 12). Chu=2+4x2-I[2/2]-2xI[2/3]+3xI[2/4]-3xI[2/5]+5xI[2/6]+I[2/7]-3xI[2/8]-2xI[2/9] (Mod 12). Chu=2+8-I[1]-2xI[0.666]+3xI[0.25]-3xI[0.4]+5xI[0.333]+I[0.285]-3xI[0.25]-2xI[0.222] (Mod 12). Chu=10-1-2x0+3x0-3x0+5x0+0-3x0-2x0 (Mod 12). Chu=9 (Mod 12). Chu=9. | Example of Formula: Har | If y=2012, then R[y/10]=2. Apply the Yearon Formula for year `y' in A.D., `Har=4-R[y/10]+9xI[{R[y/10]}/2]-8xI[{R[y/10]}/3]-I[{R[y/10]}/4]+2xI[{R[y/10]}/5]-3xI[{R[y/10]}/6]+2xI[{R[y/10]}/7]+2xI[{R[y/10]}/8]-2xI[{R[y/10]}/9] (Mod 12)'. Har=4-R[2012/10]+9xI[{R[2012/10]}/2]-8xI[{R[2012/10]}/3]-I[{R[2012/10]}/4]+2xI[{R[2012/10]}/5]-3xI[{R[2012/10]}/6]+2xI[{R[2012/10]}/7]+2xI[{R[2012/10]}/8]-2xI[{R[2012/10]}/9] (Mod 12). Har=4-2+9xI[2/2]-8xI[2/3]-I[2/4]+2xI[2/5]-3xI[2/6]+2xI[2/7]+2xI[2/8]-2xI[2/9] (Mod 12). Har=2+9xI[1]-8xI[0.666]-I[0.5]+2xI[0.4]-3xI[0.333]+2xI[0.285]+2xI[0.25]-2xI[0.222] (Mod 12). Har=2+9x1-8x0-0+2x0-3x0+2x0+2x0-2x0 (Mod 12). Har=2+9 (Mod 12). Har=11 (Mod 12). Har=11. | Example of Formula: Yue | If y=2012, then R[y/10]=2. Apply the Yearon Formula for year `y' in A.D., `Yue=10+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12)'. Yue=10+2+I[2/2]-3xI[2/8] (Mod 12). Yue=12+I[1]-3xI[0.25] (Mod 12). Yue=12+1-3x0 (Mod 12). Yue=13 (Mod 12). Yue=13-12. Yue=1. | Example of Formula: Yim | If y=2012, then R[y/10]=2. Apply the Yearon Formula for year `y' in A.D., `Yim=10-R[y/10]+4xI[{R[y/10]}/2]-3xI[{R[y/10]}/3]-5xI[{R[y/10]}/4]+3xI[{R[y/10]}/5]-8xI[{R[y/10]}/6]+8xI[{R[y/10]}/7]-I[{R[y/10]}/8]+4xI[{R[y/10]}/9] (Mod 12)'. Yim=10-R[2012/10]+4xI[{R[2012/10]}/2]-3xI[{R[2012/10]}/3]-5xI[{R[2012/10]}/4]+3xI[{R[2012/10]}/5]-8xI[{R[2012/10]}/6]+8xI[{R[2012/10]}/7]-I[{R[2012/10]}/8]+4xI[{R[2012/10]}/9] (Mod 12). Yim=10-2+4xI[2/2]-3xI[2/3]-5xI[2/4]+3xI[2/5]-8xI[2/6]+8xI[2/7]-I[2/8]+4xI[2/9] (Mod 12). Yim=8+4xI[1]-3xI[0.6666]-5xI[0.5]+3xI[0.4]-8xI[0.3333]+8xI[0.2857]-I[0.25]+4xI[0.2222] (Mod 12). Yim=8+4x1-3x0-5x0+3x0-8x0+8x0-0+4x0 (Mod 12). Yim=12 (Mod 12). Yim=12-12. Yim=0. | Example of Formula: Jit | If y=2012, then R[y/10]=2. Apply the Yearon Formula for year `y' in A.D., `Jit=7-2xR[y/10]+9xI[{R[y/10]}/4]+3xI[{R[y/10]}/8]-I[{R[y/10]}/9] (Mod 12)'. Jit=7-2xR[2012/10]+9xI[{R[2012/10]}/4]+3xI[{R[2012/10]}/8]-I[{R[2012/10]}/9] (Mod 12). Jit=7-2x2+9xI[2/4]+3xI[2/8]-I[2/9] (Mod 12). Jit=7-4+9xI[0.5]+3xI[0.25]-I[0.222] (Mod 12). Jit=3+9x0+3x0-0 (Mod 12). Jit=3 (Mod 12). Jit=3. | Example of Formula: Bos | If y=2012, then R[y/10]=2. Apply the Yearon Formula for year `y' in A.D., `Bos=8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12)'. Bos=8+R[2012/10]+I[{R[2012/10]}/2]-3xI[{R[2012/10]}/8] (Mod 12). Bos=8+2+I[2/2]-3xI[2/8] (Mod 12). Bos=10+I[1]-3xI[0.25] (Mod 12). Bos=10+1-3x0 (Mod 12). Bos=11 (Mod 12). Bos=11. | Example of Formula: Lis |
For male, the Sex Code (SC) is `M' and m=0. So, SC=0. If y=2012, apply the formula `Lis={8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+1, R[(SC+y)/2]=1:-1}] (Mod 12)'.
Lis={8+R[2012/10]+I[{R[2012/10]}/2]-3xI[{R[2012/10]}/8]}&C[R[(0+2012)/2]=0:+1, R[(0+2012)/2]=1:-1] (Mod 12).
Lis={8+2+I[2/2]-3xI[2/8]}&C[R[2012/2]=0:+1, R[2012/2]=1:-1] (Mod 12).
Lis={10+I[1]-3xI[0.25]}&C[0=0:+1, 0=1:-1] (Mod 12).
Lis={10+1-3x0}&C[0=0:+1, 0=1:-1] (Mod 12).
Lis=11&C[0=0:+1, 0=1:-1] (Mod 12).
Since the truth value of `&C[0=0]' is true and the truth value of `&C[0=1]' is false, the mathematical expression `+1' after the sign `:' should be operated.
Thus, Lis=11+1 (Mod 12). Lis=12 (Mod 12). Lis=12-12. Lis=0. | Example of Formula: Clu |
For male, the Sex Code (SC) is `M' and m=0. So, SC=0. If y=1987, apply the formula `Clu={8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+2, R[(SC+y)/2]=1:-2}] (Mod 12)'.
Clu={8+R[1987/10]+I[{R[1987/10]}/2]-3xI[{R[1987/10]}/8]}&C[R[(0+1987)/2]=0:+2, R[(0+1987)/2]=1:-2] (Mod 12).
Clu={8+7+I[7/2]-3xI[7/8]}&C[R[1987/2]=0:+2, R[1987/2]=1:-2] (Mod 12).
Clu={15+I[3.5]-3xI[0.875]}&C[1=0:+2, 1=1:-2] (Mod 12).
Clu={15+3-3x0}&C[1=0:+2, 1=1:-2] (Mod 12).
Clu=18&C[1=0:+2, 1=1:-2] (Mod 12).
Since the truth value of `&C[1=0]' is false and the truth value of `&C[1=1]' is true, the mathematical expression `-2' after the sign `:' should be operated.
Thus, Clu=18-2 (Mod 12). Clu=16 (Mod 12). Clu=16-12. Clu=4. | Example of Formula: Sho |
For female, the Sex Code (SC) is `F' and f=1. So, SC=1. If y=1959, apply the formula `Sho={8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+3, R[(SC+y)/2]=1:-3}] (Mod 12)'.
Sho={8+R[1959/10]+I[{R[1959/10]}/2]-3xI[{R[1959/10]}/8]}&C[R[(1+1959)/2]=0:+3, R[(1+1959)/2]=1:-3] (Mod 12).
Sho={8+9+I[9/2]-3xI[9/8]}&C[R[1960/2]=0:+3, R[1960/2]=1:-3] (Mod 12).
Sho={17+I[4.5]-3xI[1.125]}&C[0=0:+3, 0=1:-3] (Mod 12).
Sho={17+4-3x1}&C[0=0:+3, 0=1:-3] (Mod 12).
Sho=18&C[0=0:+3, 0=1:-3] (Mod 12).
Since the truth value of `&C[0=0]' is true and the truth value of `&C[0=1]' is false, the mathematical expression `+3' after the sign `:' should be operated.
Thus, Sho=18+3 (Mod 12). Sho=21 (Mod 12). Sho=21-12. Sho=9. | Example of Formula: Ckn |
For female, the Sex Code (SC) is `F' and f=1. So, SC=1. If y=2000, apply the formula `Ckn={8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+4, R[(SC+y)/2]=1:-4}] (Mod 12)'.
Ckn={8+R[2000/10]+I[{R[2000/10]}/2]-3xI[{R[2000/10]}/8]}&C[R[(1+2000)/2]=0:+4, R[(1+2000)/2]=1:-4] (Mod 12).
Ckn={8+0+I[0/2]-3xI[0/8]}&C[R[2001/2]=0:+4, R[2001/2]=1:-4] (Mod 12).
Ckn={8+I[0]-3xI[0]}&C[1=0:+4, 1=1:-4] (Mod 12).
Ckn={8+0-3x0}&C[1=0:+4, 1=1:-4] (Mod 12).
Ckn=8&C[1=0:+4, 1=1:-4] (Mod 12).
Since the truth value of `&C[1=0]' is false and the truth value of `&C[1=1]' is true, the mathematical expression `-4' after the sign `:' should be operated.
Thus, Ckn=8-4 (Mod 12). Ckn=4 (Mod 12). Ckn=4. | Example of Formula: Csu |
For male, the Sex Code (SC) is `M' and m=0. So, SC=0. If y=2012, apply the formula `Csu={8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+5, R[(SC+y)/2]=1:-5}] (Mod 12)'.
Csu={8+R[2012/10]+I[{R[2012/10]}/2]-3xI[{R[2012/10]}/8]}&C[R[(0+2012)/2]=0:+5, R[(0+2012)/2]=1:-5] (Mod 12).
Csu={8+2+I[2/2]-3xI[2/8]}&C[R[2012/2]=0:+5, R[2012/2]=1:-5] (Mod 12).
Csu={10+I[1]-3xI[0.25]}&C[0=0:+5, 0=1:-5] (Mod 12).
Csu={10+1-3x0}&C[0=0:+5, 0=1:-5] (Mod 12).
Csu=11&C[0=0:+5, 0=1:-5] (Mod 12).
Since the truth value of `&C[0=0]' is true and the truth value of `&C[0=1]' is false, the mathematical expression `+5' after the sign `:' should be operated.
Thus, Csu=11+5 (Mod 12). Csu=16 (Mod 12). Csu=16-12. Csu=4. | Example of Formula: Lim | If y=2012, then R[y/10]=2. Apply the Yearon Formula for year `y' in A.D., `Lim=2+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12)'. Lim=2+R[2012/10]+I[{R[2012/10]}/2]-3xI[{R[2012/10]}/8] (Mod 12). Lim=2+2+I[2/2]-3xI[2/8] (Mod 12). Lim=4+I[1]-3xI[0.25] (Mod 12). Lim=4+1-3x0 (Mod 12). Lim=5 (Mod 12). Lim=5. | Example of Formula: Hee |
For male, the Sex Code (SC) is `M' and m=0. So, SC=0. If y=1987, apply the formula `Hee={8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+7, R[(SC+y)/2]=1:-7}] (Mod 12)'.
Hee={8+R[1987/10]+I[{R[1987/10]}/2]-3xI[{R[1987/10]}/8]}&C[R[(0+1987)/2]=0:+7, R[(0+1987)/2]=1:-7] (Mod 12).
Hee={8+7+I[7/2]-3xI[7/8]}&C[R[1987/2]=0:+7, R[1987/2]=1:-7] (Mod 12).
Hee={15+I[3.5]-3xI[0.875]}&C[1=0:+7, 1=1:-7] (Mod 12).
Hee={15+3-3x0}&C[1=0:+7, 1=1:-7] (Mod 12).
Hee=18&C[1=0:+7, 1=1:-7] (Mod 12).
Since the truth value of `&C[1=0]' is false and the truth value of `&C[1=1]' is true, the mathematical expression `-7' after the sign `:' should be operated.
Thus, Hee=18-7 (Mod 12). Hee=11 (Mod 12). Hee=11. | Example of Formula: Cbm |
For female, the Sex Code (SC) is `F' and f=1. So, SC=1. If y=1959, apply the formula `Cbm={8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+8, R[(SC+y)/2]=1:-8}] (Mod 12)'.
Cbm={8+R[1959/10]+I[{R[1959/10]}/2]-3xI[{R[1959/10]}/8]}&C[R[(1+1959)/2]=0:+8, R[(1+1959)/2]=1:-8] (Mod 12).
Cbm={8+9+I[9/2]-3xI[9/8]}&C[R[1960/2]=0:+8, R[1960/2]=1:-8] (Mod 12).
Cbm={17+I[4.5]-3xI[1.125]}&C[0=0:+8, 0=1:-8] (Mod 12).
Cbm={17+4-3x1}&C[0=0:+8, 0=1:-8] (Mod 12).
Cbm=18&C[0=0:+8, 0=1:-8] (Mod 12).
Since the truth value of `&C[0=0]' is true and the truth value of `&C[0=1]' is false, the mathematical expression `+8' after the sign `:' should be operated.
Thus, Cbm=18+8 (Mod 12). Cbm=26 (Mod 12). Cbm=26-12x2. Cbm=2. | Example of Formula: Bai |
For female, the Sex Code (SC) is `F' and f=1. So, SC=1. If y=2000, apply the formula `Bai={8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+9, R[(SC+y)/2]=1:-9}] (Mod 12)'.
Bai={8+R[2000/10]+I[{R[2000/10]}/2]-3xI[{R[2000/10]}/8]}&C[R[(1+2000)/2]=0:+9, R[(1+2000)/2]=1:-9] (Mod 12).
Bai={8+0+I[0/2]-3xI[0/8]}&C[R[2001/2]=0:+9, R[2001/2]=1:-9] (Mod 12).
Bai={8+I[0]-3xI[0]}&C[1=0:+9, 1=1:-9] (Mod 12).
Bai={8+0-3x0}&C[1=0:+9, 1=1:-9] (Mod 12).
Bai=8&C[1=0:+9, 1=1:-9] (Mod 12).
Since the truth value of `&C[1=0]' is false and the truth value of `&C[1=1]' is true, the mathematical expression `-9' after the sign `:' should be operated.
Thus, Bai=8-9 (Mod 12). Bai= -1 (Mod 12). Bai=12-1. Bai=11. | Example of Formula: Fbg |
For male, the Sex Code (SC) is `M' and m=0. So, SC=0. If y=2012, apply the formula `Fbg={8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+10, R[(SC+y)/2]=1:-10}] (Mod 12)'.
Fbg={8+R[2012/10]+I[{R[2012/10]}/2]-3xI[{R[2012/10]}/8]}&C[R[(0+2012)/2]=0:+10, R[(0+2012)/2]=1:-10] (Mod 12).
Fbg={8+2+I[2/2]-3xI[2/8]}&C[R[2012/2]=0:+10, R[2012/2]=1:-10] (Mod 12).
Fbg={10+I[1]-3xI[0.25]}&C[0=0:+10, 0=1:-10] (Mod 12).
Fbg={10+1-3x0}&C[0=0:+10, 0=1:-10] (Mod 12).
Fbg=11&C[0=0:+10, 0=1:-10] (Mod 12).
Since the truth value of `&C[0=0]' is true and the truth value of `&C[0=1]' is false, the mathematical expression `+10' after the sign `:' should be operated.
Thus, Fbg=11+10 (Mod 12). Fbg=21 (Mod 12). Fbg=21-12. Fbg=9. | Example of Formula: Kfu |
For male, the Sex Code (SC) is `M' and m=0. So, SC=0. If y=1987, apply the formula `Kfu={8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+11, R[(SC+y)/2]=1:-11}] (Mod 12)'.
Kfu={8+R[1987/10]+I[{R[1987/10]}/2]-3xI[{R[1987/10]}/8]}&C[R[(0+1987)/2]=0:+11, R[(0+1987)/2]=1:-11] (Mod 12).
Kfu={8+7+I[7/2]-3xI[7/8]}&C[R[1987/2]=0:+11, R[1987/2]=1:-11] (Mod 12).
Kfu={15+I[3.5]-3xI[0.875]}&C[1=0:+11, 1=1:-11] (Mod 12).
Kfu={15+3-3x0}&C[1=0:+11, 1=1:-11] (Mod 12).
Kfu=18&C[1=0:+11, 1=1:-11] (Mod 12).
Since the truth value of `&C[1=0]' is false and the truth value of `&C[1=1]' is true, the mathematical expression `-11' after the sign `:' should be operated.
Thus, Kfu=18-11 (Mod 12). Kfu=7 (Mod 12). Kfu=7. | Example of Formula: Inc | If Ego=2, find `y' A.D. in Gregorian calendar such that the person meets yearon `Inc'. Apply the Yearon Formula for year `y' in A.D., `Inc: R[y/12]-4={(12-Ego)-7xI[Ego/5]+5xI[Ego/7]+5xI[Ego/9]+7xI[Ego/10]}&C[Ego=1:1,7]&C[Ego=2:4,10] (Mod 12)'. Inc: R[y/12]-4={(12-2)-7xI[2/5]+5xI[2/7]+5xI[2/9]+7xI[2/10]}&C[2=1:1,7]&C[2=2:4,10] (Mod 12). Inc: R[y/12]-4={10-7xI[0.4]+5xI[0.285]+5xI[0.222]+7xI[0.2]}&C[2=1:1,7]&C[2=2:4,10] (Mod 12). Inc: R[y/12]-4={10-7x0+5x0+5x0+7x0}&C[2=1:1,7]&C[2=2:4,10] (Mod 12). Inc: R[y/12]-4=10&C[2=1:1,7]&C[2=2:4,10] (Mod 12). Inc: R[y/12]-4=10&C[2=1:1,7]&C[2=2:4,10] (Mod 12). Inc: R[y/12]-4=4 (Mod 12) and Inc: R[y/12]-4=10 (Mod 12). R[y/12]=4+4 (Mod 12) and R[y/12]=10+4 (Mod 12). R[y/12]=8 (Mod 12) and R[y/12]=14 (Mod 12). R[y/12]=8 and R[y/12]=14-12. R[y/12]=8 and R[y/12]=2. Since R[y/12]=8 and R[y/12]=2, `y' can be any year in A.D. such that when `y' is divided by 12, the remainder is 2 or 8, e.g. 1982, 1994, 2006, and 1988, 2000, 2012, and so on. That is, a person with Ego=2 always comes across with yearon `Inc' in year `y' when `y' is divided by 12 and the remainder is 2 or 8. | Example of Formula: Win | If Ego=2, find `y' A.D. in Gregorian calendar such that the person meets yearon `Win'. Apply the Yearon Formula for year `y' in A.D., `Win: R[y/12]-4={(Ego+5)+I[Ego/5]+I[Ego/7]+I[Ego/9]}&C[Ego=1:4,10]&C[Ego=2:1,7] (Mod 12)'. Win: R[y/12]-4={(2+5)+I[2/5]+I[2/7]+I[2/9]}&C[2=1:4,10]&C[2=2:1,7] (Mod 12). Win: R[y/12]-4={7+I[0.4]+I[0.285]+I[0.222]}&C[2=1:4,10]&C[2=2:1,7] (Mod 12). Win: R[y/12]-4={7+0+0+0}&C[2=1:4,10]&C[2=2:1,7] (Mod 12). Win: R[y/12]-4=7&C[2=1:4,10]&C[2=2:1,7] (Mod 12). Win: R[y/12]-4=1 (Mod 12) and Win: R[y/12]-4=7 (Mod 12). R[y/12]=1+4 (Mod 12) and R[y/12]=7+4 (Mod 12). R[y/12]=5 (Mod 12) and R[y/12]=11 (Mod 12). R[y/12]=5 and R[y/12]=11. Since R[y/12]=5 and R[y/12]=11, `y' can be any year in A.D. such that when `y' is divided by 12, the remainder is 5 or 11, e.g. 1985, 1997, 2009, and 1991, 2003, 2015, and so on. That is, a person with Ego=2 always comes across with yearon `Win' in year `y' when `y' is divided by 12 and the remainder is 5 or 11. | Example of Formula: Los | If Ego=10, find `y' A.D. in Gregorian calendar such that the person meets yearon `Los'. Apply the Yearon Formula for year `y' in A.D., `Los: R[y/12]-4={(4-Ego)+5xI[Ego/3]+2xI[Ego/7]}&C[Ego=5:1,7]&C[Ego=6:4,10] (Mod 12)'. Los: R[y/12]-4={(4-10)+5xI[10/3]+2xI[10/7]}&C[10=5:1,7]&C[10=6:4,10] (Mod 12). Los: R[y/12]-4={-6+5xI[3.333]+2xI[1.428]}&C[10=5:1,7]&C[10=6:4,10] (Mod 12). Los: R[y/12]-4={-6+5x3+2x1}&C[10=5:1,7]&C[10=6:4,10] (Mod 12). Los: R[y/12]-4=11&C[10=5:1,7]&C[10=6:4,10] (Mod 12). Los: R[y/12]-4=11 (Mod 12). Los: R[y/12]=11+4 (Mod 12). Los: R[y/12]=15 (Mod 12). Los: R[y/12]=15-12. Los: R[y/12]=3. Since R[y/12]=3, `y' can be any year in A.D. such that when `y' is divided by 12, the remainder is 3, e.g. 1983, 1995, 2007, and so on. That is, a person with Ego=10 always comes across with yearon `Los' in year `y' when `y' is divided by 12 and the remainder is 3. | Example of Formula: Hui | If y=1976, apply the Yearon Formula for year `y' in A.D., `Hui=2+y (Mod 12)'. Hui=2+1976 (Mod 12). Hui=1978 (Mod 12). Hui=1978-164x12. Hui=10. | Example of Formula: Huk | If y=1976, apply the Yearon Formula for year `y' in A.D., `Huk=10-y (Mod 12)'. Huk=10-1976 (Mod 12). Huk= -1966 (Mod 12). Huk=164x12-1966. Huk=2. | Example of Formula: Chi | If y=1976, apply the Yearon Formula for year `y' in A.D., `Chi=y (Mod 12)'. Chi=1976 (Mod 12). Chi=1976-164x12. Chi=8. | Example of Formula: Kok | If y=1976, apply the Yearon Formula for year `y' in A.D., `Kok=2-y (Mod 12)'. Kok=2-1976 (Mod 12). Kok= -1974 (Mod 12). Kok=165x12-1974. Kok=6. | Example of Formula: Que/Kar | If y=1952, apply the Yearon Formula for year `y' in A.D., `Que/Kar=2+y (Mod 12)'. Que/Kar=2+1952 (Mod 12). Que/Kar=1954 (Mod 12). Que/Kar=1954-162x12. Que/Kar=10. | Example of Formula: Lun | If y=1976, apply the Yearon Formula for year `y' in A.D., `Lun=7-y (Mod 12)'. Lun=7-1976 (Mod 12). Lun= -1969 (Mod 12). Lun=165x12-1969. Lun=11. | Example of Formula: Hei | If y=1976, apply the Yearon Formula for year `y' in A.D., `Hei=1-y (Mod 12)'. Hei=1-1976 (Mod 12). Hei= -1975 (Mod 12). Hei=165x12-1975 (Mod 12). Hei=5. | Example of Formula: Yiu | If y=1986, apply the Yearon Formula for year `y' in A.D., `Yiu=7+y (Mod 12)'. Yiu=7+1986 (Mod 12). Yiu=1993 (Mod 12). Yiu=1993-166x12 (Mod 12). Yiu=1. | Example of Formula: Hoo | If y=1976, apply the Yearon Formula for year `y' in A.D., `Hoo=9+y (Mod 12)'. Hoo=9+1976 (Mod 12). Hoo=1985 (Mod 12). Hoo=1985-165x12. Hoo=5. | Example of Formula: Psu | If y=1976, then R[y/12]=8. Apply the Yearon Formula for year `y' in A.D., `Psu=9-4xR[y/3] (Mod 12)'. Psu=9-4xR[1976/3] (Mod 12). Psu=9-4x8 (Mod 12). Psu=9-32 (Mod 12). Psu= -23 (Mod 12). Psu=12x2-23. Psu=24-23. Psu=1. | Example of Formula: Goo | If y=1976, then R[y/12]=8. Apply the Yearon Formula for year `y' in A.D., `Goo=11-9xI[{R[y/12]}/3] (Mod 12)'. Goo=11-9xI[{R[1976/12]}/3] (Mod 12). Goo=11-9xI[8/3] (Mod 12). Goo=11-9xI[2.666] (Mod 12). Goo=11-9x2 (Mod 12). Goo=11-18 (Mod 12). Goo= -7 (Mod 12). Goo=12-7. Goo=5. | Example of Formula: Gwa | If y=1976, then R[y/12]=8. Apply the Yearon Formula for year `y' in A.D., `Gwa=7+3xI[{R[y/12]}/3] (Mod 12)'. Gwa=7+3xI[{R[1976/12]}/3] (Mod 12). Gwa=7+3xI[8/3] (Mod 12). Gwa=7+3xI[2.666] (Mod 12). Gwa=7+3x2 (Mod 12). Gwa=7+6 (Mod 12). Gwa=13 (Mod 12). Gwa=13-12. Gwa=1. | Example of Formula: Jfg | If y=2022, apply the Yearon Formula for year `y' in A.D., `Jfg=3xR[(y-1)/3]+2xI[{R[(y-1)/3]}/2] (Mod 12)'. Jfg=3xR[(2022-1)/3]+2xI[{R[(2022-1)/3]}/2] (Mod 12). Jfg=3xR[2021/3]+2xI[{R[2021/3]}/2] (Mod 12). Jfg=3x2+2xI[2/2] (Mod 12). Jfg=6+2xI[1] (Mod 12). Jfg=6+2x1 (Mod 12). Jfg=8 (Mod 12). Jfg=8. | Example of Formula: Fei | If y=1976, then R[y/12]=8. Apply the Yearon Formula for year `y' in A.D., `Fei=4+y+6xI[{R[y/12]+2}/3] (Mod 12)'. Fei=4+1976+6xI[{R[1976/12]+2}/3] (Mod 12). Fei=1980+6xI[{8+2}/3] (Mod 12). Fei=1980+6xI[10/3] (Mod 12). Fei=1980+6xI[3.333] (Mod 12). Fei=1980+6x3 (Mod 12). Fei=1998 (Mod 12). Fei=1998-166x12. Fei=6. | Example of Formula: Yei | If y=1976, apply the Yearon Formula for year `y' in A.D., `Yei=7+y (Mod 12)'. Yei=7+1976 (Mod 12). Yei=1983 (Mod 12). Yei=1983-165x12. Yei=3. | Example of Formula: Kwy | If y=1976, then R[y/4]=0. Apply the Yearon Formula for year `y' in A.D., `Kwy=2-3xR[y/4] (Mod 12)'. Kwy=2-3xR[1976/4] (Mod 12). Kwy=2-3x0 (Mod 12). Kwy=2 (Mod 12). Kwy=2. | Example of Formula: Lfo | If y=1976, then R[y/4]=0. Apply the Yearon Formula for year `y' in A.D., `Lfo=8+9xR[y/4] (Mod 12)'. Lfo=8+9xR[1976/4] (Mod 12). Lfo=8+9x0 (Mod 12). Lfo=8 (Mod 12). Lfo=8. | Example of Formula: Cak | If y=1976, then R[y/12]=8. Apply the Yearon Formula for year `y' in A.D., `Cak=10-7xR[y/12] (Mod 12)'. Cak=10-7xR[1976/12] (Mod 12). Cak=10-7x8 (Mod 12). Cak= -10-56 (Mod 12). Cak= -46 (Mod 12). Cak=12x4-46. Cak=2. | Example of Formula: Tdo | If y=1976, then R[y/4]=0. Apply the Yearon Formula for year `y' in A.D., `Tdo=5+3xR[y/4] (Mod 12)'. Tdo=5+3xR[1976/4] (Mod 12). Tdo=5+3x0 (Mod 12). Tdo=5 (Mod 12). Tdo=5. | Example of Formula: Pik | If y=1976, then R[y/12]=8. Apply the Yearon Formula for year `y' in A.D., `Pik=6+4xR[y/12]+2xI[{R[y/12]}/3]+7xI[{R[y/12]}/4]-3xI[{R[y/12]}/6]+2xI[{R[y/12]}/7]+10xI[{R[y/12]}/9]-2xI[{R[y/12]}/11] (Mod 12)'. Pik=6+4xR[1976/12]+2xI[{R[1976/12]}/3]+7xI[{R[1976/12]}/4]-3xI[{R[1976/12]}/6]+2xI[{R[1976/12]}/7]+10xI[{R[1976/12]}/9]-2xI[{R[1976/12]}/11] (Mod 12). Pik=6+4x8+2xI[8/3]+7xI[8/4]-3xI[8/6]+2xI[8/7]+10xI[8/9]-2xI[8/11] (Mod 12). Pik=6+32+2xI[2.666]+7xI[2]-3xI[1.333]+2xI[1.142]+10xI[0.888]-2xI[0.727] (Mod 12). Pik=38+2x2+7x2-3x1+2x1+10x0-2x0 (Mod 12). Pik=38+4+14-3+2 (Mod 12). Pik=55 (Mod 12). Pik=55-12x4. Pik=55-48. Pik=7. | Example of Formula: Sui | If y=1976, then R[y/4]=0. Apply the Yearon Formula for year `y' in A.D., `Sui=3+6xR[y/4]-3xI[{R[y/4]}/2] (Mod 12)'. Sui=3+6xR[1976/4]-3xI[{R[1976/4]}/2] (Mod 12). Sui=3+6x0-3xI[0/2] (Mod 12). Sui=3-3xI[0] (Mod 12). Sui=3-3x0 (Mod 12). Sui=3 (Mod 12). Sui=3. | Example of Formula: Yng | If y=1976, then R[y/12]=8. Apply the Yearon Formula for year `y' in A.D., `Yng=2+7xR[y/12]+3xI[{R[y/12]}/2]+9xI[{R[y/12]}/3]-6xI[{R[y/12]}/4] (Mod 12)'. Yng=2+7xR[1976/12]+3xI[{R[1976/12]}/2]+9xI[{R[1976/12]}/3]-6xI[{R[1976/12]}/4] (Mod 12). Yng=2+7x8+3xI[8/2]+9xI[8/3]-6xI[8/4] (Mod 12). Yng=58+3xI[4]+9xI[2.666]-6xI[2] (Mod 12). Yng=58+3x4+9x2-6x2 (Mod 12). Yng=76 (Mod 12). Yng=76-6x12. Yng=4. | Example of Formula: Hoi | If y=1976, apply the Yearon Formula for year `y' in A.D., `Hoi=11-y (Mod 12)'. Hoi=11-1976 (Mod 12). Hoi= -1965 (Mod 12). Hoi=164x12-1965. Hoi=3. | Example of Formula: Por | If y=1976, apply the Yearon Formula for year `y' in A.D., `Por=5+R[y/12]-6x{R[y/12]-4} (Mod 12)'. Por=5+R[1976/12]-6x{R[1976/12]-4} (Mod 12). Por=5+8-6x{8-4} (Mod 12). Por=13-6x4 (Mod 12). Por= -11 (Mod 12). Por=12-11. Por=1. | Example of Formula: Aat | If y=1976, apply the Yearon Formula for year `y' in A.D., `Aat=4-y (Mod 12)'. Aat=4-1976 (Mod 12). Aat= -1972 (Mod 12). Aat=165x12-1972. Aat=8. | Example of Formula: Nik | If y=1976, then R[y/12]=8. Apply the Yearon Formula for year `y' in A.D., `Nik=10-9xI[{R[y/12]}/3] (Mod 12)'. Nik=10-9xI[{R[1976/12]}/3] (Mod 12). Nik=10-9xI[8/3] (Mod 12). Nik=10-9xI[2.666] (Mod 12). Nik=10-9x2 (Mod 12). Nik=10-18 (Mod 12). Nik= -8 (Mod 12). Nik=12-8. Nik=4. | Example of Formula: Hom | If y=2047, then R[y/12]=7. Apply the Yearon Formula for year `y' in A.D., `Hom=5+2xR[y/12]-9xI[{R[y/12]}/3]+6xI[{R[y/12]}/4]-6xI[{R[y/12]}/5]+I[{R[y/12]}/6]+6xI[{R[y/12]}/7]-6xI[{R[y/12]}/9]+2xI[{R[y/12]}/10]+8xI[{R[y/12]}/11] (Mod 12)'. Hom=5+2xR[2047/12]-9xI[{R[2047/12]}/3]+6xI[{R[2047/12]}/4]-6xI[{R[2047/12]}/5]+I[{R[2047/12]}/6]+6xI[{R[2047/12]}/7]-6xI[{R[2047/12]}/9]+2xI[{R[2047/12]}/10]+8xI[{R[2047/12]}/11] (Mod 12). Hom=5+2x7-9xI[7/3]+6xI[7/4]-6xI[7/5]+I[7/6]+6xI[7/7]-6xI[7/9]+2xI[7/10]+8xI[7/11] (Mod 12). Hom=19-9xI[2.3333]+6xI[1.75]-6xI[1.4]+I[1.1666]+6xI[1]-6xI[0.7777]+2xI[0.7]+8xI[0.6363] (Mod 12). Hom=19-9x2+6x1-6x1+1+6x1-6x0+2x0+8x0 (Mod 12). Hom=7 (Mod 12). | Example of Formula: Yuk | If y=1976, then R[y/4]=0. Apply the Yearon Formula for year `y' in A.D., `Yuk=5-3xR[y/4] (Mod 12)'. Yuk=5-3xR[1976/4] (Mod 12). Yuk=5-3x0 (Mod 12). Yuk=5 (Mod 12). Yuk=5. | Example of Formula: Gak | If y=1976, apply the Yearon Formula for year `y' in A.D., `Gak=3xI[{R[2047/12]}/3] (Mod 12)'. Gak=3xI[{R[2047/12]}/3] (Mod 12). Gak=3xI[7/3] (Mod 12). Gak=3xI[2.333] (Mod 12). Gak=3x2 (Mod 12). Gak=6 (Mod 12). Gak=6. | Example of Formula: Ysi | If y=1976, apply the Yearon Formula for year `y' in A.D., `Ysi=&C{R[y/12]=0, 1:10}&C{R[y/12]=3, 10:4}&C{R[y/12]=4, 8:1}&C{R[y/12]=5:2}&C{R[y/12]=9:9} (Mod 12)'. Ysi=&C{R[1976/12]=0, 1:10}&C{R[1976/12]=3, 10:4}&C{R[1976/12]=4, 8:1}&C{R[1976/12]=5:2}&C{R[1976/12]=9:9} (Mod 12). Ysi=&C{8=0, 1:10}&C{8=3, 10:4}&C{8=4, 8:1}&C{8=5:2}&C{8=9:9} (Mod 12). Ysi=&C{8=4, 8:1} (Mod 12). Ysi=1 (Mod 12). Ysi=1. | Example of Formula: Kam | If y=1976, then R[y/4]=0. Apply the Yearon Formula for year `y' in A.D., `Kam=9xR[y/4] (Mod 12)'. Kam=9xR[1976/4] (Mod 12). Kam=9x0 (Mod 12). Kam=0 (Mod 12). Kam=0. | Example of Formula: Can | If y=1976, then R[y/6]=2. Apply the Yearon Formula for year `y' in A.D., `Can=9+R[(y+2)/6] (Mod 12)'. Can=9+R[(1976+2)/6] (Mod 12). Can=9+R[1978/6] (Mod 12). Can=9+4 (Mod 12). Can=13 (Mod 12). Can=13-12. Can=1. | Example of Formula: Bau | If y=1976, then R[y/6]=2. Apply the Yearon Formula for year `y' in A.D., `Bau=3+R[(y+2)/6] (Mod 12)'. Bau=3+R[(1976+2)/6] (Mod 12). Bau=3+R[1978/6] (Mod 12). Bau=3+4 (Mod 12). Bau=7 (Mod 12). Bau=7. | Example of Formula: Chm | If y=1976, then R[y/4]=0. Apply the Yearon Formula for year `y' in A.D., `Chm=9xR[y/4] (Mod 12)'. Chm=9xR[1976/4] (Mod 12). Chm=9x0 (Mod 12). Chm=0 (Mod 12). Chm=0. | Example of Formula: Pan | If y=1976, then R[y/4]=0. Apply the Yearon Formula for year `y' in A.D., `Pan=1+9xR[y/4] (Mod 12)'. Pan=1+9xR[1976/4] (Mod 12). Pan=1+9x0 (Mod 12). Pan=1 (Mod 12). Pan=1. | Example of Formula: Yik | If y=1976, then R[y/4]=0. Apply the Yearon Formula for year `y' in A.D., `Yik=2+9xR[y/4] (Mod 12)'. Yik=2+9xR[1976/4] (Mod 12). Yik=2+9x0 (Mod 12). Yik=2 (Mod 12). Yik=2. | Example of Formula: Sik | If y=1976, then R[y/4]=0. Apply the Yearon Formula for year `y' in A.D., `Sik=3+9xR[y/4] (Mod 12)'. Sik=3+9xR[1976/4] (Mod 12). Sik=3+9x0 (Mod 12). Sik=3 (Mod 12). Sik=3. | Example of Formula: Wah | If y=1976, then R[y/4]=0. Apply the Yearon Formula for year `y' in A.D., `Wah=4+9xR[y/4] (Mod 12)'. Wah=4+9xR[1976/4] (Mod 12). Wah=4+9x0 (Mod 12). Wah=4 (Mod 12). Wah=4. | Example of Formula: Cip | If y=1976, then R[y/4]=0. Apply the Yearon Formula for year `y' in A.D., `Cip=5+9xR[y/4] (Mod 12)'. Cip=5+9xR[1976/4] (Mod 12). Cip=5+9x0 (Mod 12). Cip=5 (Mod 12). Cip=5. | Example of Formula: Joi | If y=1976, then R[y/4]=0. Apply the Yearon Formula for year `y' in A.D., `Joi=6+9xR[y/4] (Mod 12)'. Joi=6+9xR[1976/4] (Mod 12). Joi=6+9x0 (Mod 12). Joi=6 (Mod 12). Joi=6. | Example of Formula: Tst | If y=1976, then R[y/4]=0. Apply the Yearon Formula for year `y' in A.D., `Tst=7+9xR[y/4] (Mod 12)'. Tst=7+9xR[1976/4] (Mod 12). Tst=7+9x0 (Mod 12). Tst=7 (Mod 12). Tst=7. | Example of Formula: Zhi | If y=1976, then R[y/4]=0. Apply the Yearon Formula for year `y' in A.D., `Zhi=8+9xR[y/4] (Mod 12)'. Zhi=8+9xR[1976/4] (Mod 12). Zhi=8+9x0 (Mod 12). Zhi=8 (Mod 12). Zhi=8. | Example of Formula: Ham | If y=1976, then R[y/4]=0. Apply the Yearon Formula for year `y' in A.D., `Ham=9+9xR[y/4] (Mod 12)'. Ham=9+9xR[1976/4] (Mod 12). Ham=9+9x0 (Mod 12). Ham=9 (Mod 12). Ham=9. | Example of Formula: Yut | If y=1976, then R[y/4]=0. Apply the Yearon Formula for year `y' in A.D., `Yut=10+9xR[y/4] (Mod 12)'. Yut=10+9xR[1976/4] (Mod 12). Yut=10+9x0 (Mod 12). Yut=10 (Mod 12). Yut=10. | Example of Formula: Mon | If y=1976, then R[y/4]=0. Apply the Yearon Formula for year `y' in A.D., `Mon=11+9xR[y/4] (Mod 12)'. Mon=11+9xR[1976/4] (Mod 12). Mon=11+9x0 (Mod 12). Mon=11 (Mod 12). Mon=11. | Example of Formula: Kim | If y=1976, apply the Yearon Formula for year `y' in A.D., `Kim=8+y (Mod 12)'. Kim=8+1976 (Mod 12). Kim=1984 (Mod 12). Kim=1984-165x12. Kim=4. | Example of Formula: Zee | If y=1976, apply the Yearon Formula for year `y' in A.D., `Zee=8+y (Mod 12)'. Zee=8+1976 (Mod 12). Zee=1984 (Mod 12). Zee=1984-165x12. Zee=4. | Example of Formula: Fym | If y=1976, apply the Yearon Formula for year `y' in A.D., `Fym=9+y (Mod 12)'. Fym=9+1976 (Mod 12). Fym=1985 (Mod 12). Fym=1985-165x12. Fym=5. | Example of Formula: Sog | If y=1976, apply the Yearon Formula for year `y' in A.D., `Sog=10+y (Mod 12)'. Sog=10+1976 (Mod 12). Sog=1986 (Mod 12). Sog=1986-165x12. Sog=6. | Example of Formula: Sok | If y=1976, apply the Yearon Formula for year `y' in A.D., `Sok=11+y (Mod 12)'. Sok=11+1976 (Mod 12). Sok=1987 (Mod 12). Sok=1987-165x12. Sok=7. | Example of Formula: Kun | If y=1976, apply the Yearon Formula for year `y' in A.D., `Kun=y (Mod 12)'. Kun=1976 (Mod 12). Kun=1976-164x12. Kun=8. | Example of Formula: Sfu | If y=1976, apply the Yearon Formula for year `y' in A.D., `Sfu=1+y (Mod 12)'. Sfu=1+1976 (Mod 12). Sfu=1977 (Mod 12). Sfu=1977-164x12. Sfu=9. | Example of Formula: Buy | If y=1976, apply the Yearon Formula for year `y' in A.D., `Buy=2+y (Mod 12)'. Buy=2+1976 (Mod 12). Buy=1978 (Mod 12). Buy=1978-164x12. Buy=10. | Example of Formula: Ark | If y=1976, apply the Yearon Formula for year `y' in A.D., `Ark=3+y (Mod 12)'. Ark=3+1976 (Mod 12). Ark=1979 (Mod 12). Ark=1979-164x12. Ark=11. | Example of Formula: Foo | If y=1976, apply the Yearon Formula for year `y' in A.D., `Foo=4+y (Mod 12)'. Foo=4+1976 (Mod 12). Foo=1980 (Mod 12). Foo=1980-165x12. Foo=0. | Example of Formula: Sit | If y=1976, apply the Yearon Formula for year `y' in A.D., `Sit=5+y (Mod 12)'. Sit=5+1976 (Mod 12). Sit=1981 (Mod 12). Sit=1981-165x12. Sit=1. | Example of Formula: Diu | If y=1976, apply the Yearon Formula for year `y' in A.D., `Diu=6+y (Mod 12)'. Diu=6+1976 (Mod 12). Diu=1982 (Mod 12). Diu=1982-165x12. Diu=2. | Example of Formula: Bag | If y=1976, apply the Yearon Formula for year `y' in A.D., `Bag=7+y (Mod 12)'. Bag=7+1976 (Mod 12). Bag=1983 (Mod 12). Bag=1983-165x12. Bag=3. | Example of Formula: Coi | Assume a person was born at 6a.m. on 29th May,1917. y=1917. m=5 and h=6. Apply the Yearon Formula for year `y' in A.D., `Coi=8+y+m-A[h/2] (Mod 12)'. Coi=8+1917+5-A[6/2] (Mod 12). Coi=1930-A[3] (Mod 12). Coi=1930-3 (Mod 12). Coi=1927 (Mod 12). Coi=1927-160x12. Coi=7. If y=1976 and S=9, apply the Yearon Formula for year `y' in A.D., `Coi=S+8+y (Mod 12)'. Coi=9+8+1976 (Mod 12), Coi=1993 (Mod 12), Coi=1993-166x12, Coi=1. | Example of Formula: Sau | Assume a person was born at 6a.m. on 29th May,1917. y=1917. m=5 and h=6. Apply the Yearon Formula for year `y' in A.D., `Sau=8+y+m+A[h/2] (Mod 12)'. Sau=8+1917+5+A[6/2] (Mod 12). Sau=1930+A[3] (Mod 12). Sau=1930+3 (Mod 12). Sau=1933 (Mod 12). Sau=1933-161x12. Sau=1. If y=1976 and B=1, apply the Yearon Formula for year `y' in A.D., `Sau=B+8+y (Mod 12)'. Sau=1+8+1976 (Mod 12), Sau=1985 (Mod 12), Sau=1985-165x12, Sau=5. | Example of Formula: Chn | If y=2012, then R[y/60]=32. Apply the Yearon Formula for year `y' in A.D., `Chn=10-2xI[{56+R[y/60]}/10] (Mod 12)'. Chn=10-2xI[{56+R[2012/60]}/10] (Mod 12). Chn=10-2xI[{56+32}/10] (Mod 12). Chn=10-2xI[88/10] (Mod 12). Chn=10-2xI[8.8] (Mod 12). Chn=10-2x8 (Mod 12). Chn=10-16 (Mod 12). Chn= -6 (Mod 12). Chn=12-6. Chn=6. | Example of Formula: Chn2 | If y=2012, then R[y/60]=32. Apply the Yearon Formula for year `y' in A.D., `Chn2=11-2xI[{56+R[y/60]}/10] (Mod 12) or Chn2=Chn+1 (Mod 12)'. Chn2=11-2xI[{56+R[2012/60]}/10] (Mod 12). Chn2=11-2xI[{56+32}/10] (Mod 12). Chn2=11-2xI[88/10] (Mod 12). Chn2=11-2xI[8.8] (Mod 12). Chn2=11-2x8 (Mod 12). Chn2=11-16 (Mod 12). Chn2= -5 (Mod 12). Chn2=12-5. Chn2=7. Or, calculate `Chn2' from `Chn'. Chn2=Chn+1 (Mod 12). Chn2=6+1 (Mod 12). Chn2=7 (Mod 12). Chn2=7. Hence. Chn=6 and Chn2=7. | |